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1. Introduction

Recognition is a term everyone in computer vision and machine learning un-

derstands – or at least we think we do. Despite multiple decades of research, it may

be somewhat surprising to learn that a very basic question remains unresolved: is

recognition metric? Familiar distance metrics used in computer vision include Eu-

clidean distance and Mahalanobis distance, both computed in feature space. Given

one of these metrics, the task of recognizing an unknown object can be approached

by finding the class label of its nearest neighbor under that distance metric in a set

of training samples. Such an approach provides a recognition function, thus some

level of recognition can be accomplished with a metric. However, at a more funda-

mental level, we would like to know if distance truly captures all that is meant by

the term recognition, and if metrics are good approaches to solving complex recog-

nition tasks in computer vision. In this review article, we adopt the convention that

a problem is metric if the best solutions to that problem can be achieved by directly

applying a distance metric to compute the answer.

An important observation with implications for recognition is that in separa-

ble metric space, using a distance metric and the nearest neighbor (NN) algorithm

provides useful consistency. As the number of i.i.d. samples from the classes ap-

proaches infinity, the NN algorithm will converge to an error rate no worse than

twice the Bayes error rate, i.e. no worse than twice the minimum achievable er-

ror rate given the distribution of the data [3]. To many, this convergence theorem

suggests that recognition can always be formulated as NN matching with an ap-

propriate distance metric. However, having to double the error of the optimal algo-

rithm over the same data often does not lead to a particularly good algorithm. This
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Figure 1: Assumptions are often made about the underlying nature of recognition in computer vision
that do not hold true in practice. A common constraint placed upon recognition algorithms is that
they must be metric, meaning their distance scores adhere to the properties of non-negativity, identity,
symmetry and the triangle inequality. At first glance, the scores from many recognition algorithms
appear to satisfy these constraints. However, violations can be subtle. For example, the distance
scores produced by the top-performing Tom-vs-Pete algorithm [1] for these images from LFW [2]
violate the triangle inequality.

becomes apparent when actual error rates are considered during experimentation.

With the recent popularity of metric learning [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] for

various recognition tasks, where a metric is learned over given pairs of images that

are similar or dissimilar, one might infer that recognition is always a metric pro-

cess. We note that the NN convergence theorem [3] is true for any metric – hence

any improvements from the choice of metric, or metric learning, are not about the

asymptotic error, but something else such as the error for finite samples and/or the

rate of convergence. We will show that while metric learning can produce rea-

sonable results, enforcing metric properties leaves out information, often limiting

the quality of recognition with finite data. This is consistent with supporting prior

work [14] in pattern recognition that shows increasing discriminative power for

non-metric distance measures over visual data.

If the convergence theorem itself is about recognition, then the recognition
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problem is assumed to be formulated in an asymptotic sense with infinite i.i.d.

samples. We argue that visual recognition does not rely on either of those assump-

tions, but rather focuses on maximizing the accuracy for finite, and, unfortunately,

opportunistic and hence potentially biased sampling.

A metric function is defined as follows:

Definition 1. (Distance Metric)
A function d : X ⇥ X ! R is metric over a set X if it satisfies four properties

for {x, y, z} ✓ X:

1. d(x, y) � 0 (non-negativity)
2. d(x, y) = 0, x = y (identity)
3. d(x, y) = d(y, x) (symmetry)
4. d(x, z)  d(x, y) + d(y, z) (the triangle inequality)

Metric functions have useful properties that allow one to show that a particular

problem can be formulated as a convex minimization problem, or, as we have

stated, that various types of sequences converge in the limit. There are also several

cases where one of the properties is excluded. Functions that do not satisfy the

triangle inequality are called semimetrics, those that violate symmetry are called

quasimetrics, and those missing one or both halves of the identity requirement are

called pseudometrics1. While the term “distance measure” is sometimes used to

mean a distance metric, it is more appropriate to use this term to mean a measure-

ment that provides information about dissimilarity, but may be formally non-metric

(our use of the term follows this convention).

Is it reasonable to assume that a distance metric d maps pairs of elements from

X into R during recognition? When a person recognizes an object, do they refer to

1Note that without the property of identity, the theorem of NN convergence [3] does not hold.
It has also been shown [15] that the optimal distance measure, in the sense of minimal Bayes risk,
always violates the identity property and therefore is not metric.
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an actual image of the object of interest? A more likely alternative is a comparison

to a stored model with a more complex internal representation, not a direct copy

of some prior trained input. This view is consistent with prototype theory [16] in

cognitive psychology. Thus, at a structural level, recognition in this mode takes an

input x 2 X, and a model M, and hence cannot be metric because it is not even

of the proper functional form. It is possible to build a model using just x, and

then consider the distance between models in a nearest neighbor fashion. Many

instance learning algorithms do just that. However, for many other commonly used

recognition algorithms, one cannot induce a proper model from a single input2.

Thus, the general problem of recognition cannot be restricted to just metrics, even

though it must include them.

In the core pattern recognition literature, this issue has been raised specifi-

cally in the context of Euclidean distance. Pȩkalska et al. [17] observe that “Non-

metric dissimilarity measures may arise in practice e.g. when objects represented

by sensory measurements or by structural descriptions are compared.” Experi-

ments to confirm this have included: comparing distance measures before and af-

ter Euclidean transforms are applied [17, 18]; an examination of the parameter

space of data for metricity [14]; and an evaluation of dissimilarity representations

for classification [19, 20, 18, 21, 22]. In all cases, an enforcement of Euclidean

constraints does not help classification performance [23], and non-Euclidean mea-

sures are often shown to be better, leading Pȩkalska et al. to conclude “that non-

Euclidean and/or non-metric distances can be informative and useful in statistical

learning” [14].

2For example, consider support vector machines (SVM): one cannot draw a conceptual decision
boundary without both positive and negative samples.
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However, even in light of this finding, the research area of metric learning

for computer vision remains quite active. A key di↵erence from earlier work in

metrics for statistical learning is that recent work in visual learning, with its strong

need for data normalization, eschews Euclidean distance in favor of Mahalanobis

distance [4]. In our review of the literature, we take a broader look at the many

non-Euclidean metric learning approaches that have been proposed since the above

studies were conducted.

Beyond statistical learning, it is natural to ask if the human mind, a most suc-

cessful recognition system, operates in a way that satisfies the key metric properties

of symmetry and the triangle inequality. The consensus in the cognitive psychol-

ogy community is a definitive “no”. In seminal work, Tversky [24] showed that

human analysis of “similarity” is non-symmetric and is context dependent. One

of the visual experiments conducted by Tversky was a simple pair-matching task,

where subjects were asked if two block letters were the same or not. A similar-

ity function S(p, q) indicated the frequency at which subjects noted letter p to be

the same as q. The experiment showed that the order of presentation of the letters

mattered in a statistically significant way: S(p, q) , S(q, p). This result, along

with others for matching faces, abstract symbols, and the names of countries led

Tversky to conclude that “similarity is not necessarily a symmetric relation.”

In subsequent work, Tversky and Gati [25] examined if the triangle inequality

is satisfied by humans when assessing similarity. Because the triangle inequality

can always be satisfied by adding a large constant to the distances between indi-

vidual points when measuring dissimilarity on an ordinal scale, Tversky and Gati

proposed a test that assumes segmental additivity: d(x, z) = d(x, y) + d(y, z). Over

numerous pair-matching trials across stimuli, human similarity judgments were
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found to violate the triangle inequality in a statistically significant manner. Even

without the triangle inequality for additive functions, it is still possible to induce

metric models with subadditive metrics. However, in experiments where subjects

provided subjective probability estimates instead of ordinal numbers, Tversky and

Koehler [26] were only able to show that the reported scores are often, but not

always, subadditive3.

Linking these findings back to pattern recognition, Duin [28, 29] finds a similar

e↵ect for the problem of judging di↵erence between real world objects, and high-

lights the need for a reconsideration of the assumptions that underlie common dis-

tance measures for automated classification. If humans are employing non-metric,

non-symmetric similarity measures, do we really want to constrain our recognition

algorithms in computer vision to be metric? Addressing this notion in the following

sections, we present the following contributions:

• A critical review of the most recent literature in metric learning for visual

recognition.

• A new general definition of recognition, which includes provisions for com-

plex models trained over sets of images and assumptions.

• An extensive meta-analysis of metric learning, along with new experiments

that give an indication of how often metric constraints are violated.

• A series of useful recommendations, based on our results, for recognition

algorithm designs in metric and non-metric spaces.

3It is possible to work around the constraint of segmental additivity using a subadditive metric
based on Shepard’s universal law of generalization to induce a metric from finite sets of data [27],
but the result is still not consistent with the human perception findings of Tversky and Koehler [26].
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2. A General Definition of Recognition

Surprisingly, a canonical definition of recognition for computer vision has yet

to emerge. Many di↵erent definitions of recognition can be found in the literature,

each addressing particular aspects of the problem. The familiar distance-based ap-

proach to recognition [5, 7, 11] compares feature vectors from a test image to one

or more feature vectors from known images using a distance measure to indicate

similarity. More compatible with recent machine learning-based approaches, sta-

tistical learning theory [30] casts recognition as risk minimization over a given loss

function and joint probability distribution for a class. Other definitions include the

probabilistic formulation described by Shakhnarovich et al. [31], where recogni-

tion maximizes the probability that an input distribution matches a probability rule

for a single known class, as well as the NN decision rule [3] discussed in Sec. 1.

With many possibilities for class sampling, modeling for training, and strate-

gies for matching, a concise definition that captures all of these aspects is an open

issue. The above definitions tend to satisfy the definition of a particular subprob-

lem in recognition, such as pair-matching (1:1 matching), verification (1:1 match-

ing with a claimed class), identification (1:n matching), or search (1:n matching

returning multiple results). However, no current definition captures the general

problem encompassing all of them. Further, each definition is missing necessary

detail with respect to the information available during matching. For a given class,

there is a possibility that assumptions outside any given training examples have

been made, which should be incorporated into the overall definition. These as-

sumptions can include side-information [32], regularization terms [33], score nor-

malization [34], or more fundamentally, data used to train a detector that is applied
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when pre-processing the training and testing images (e.g. in the case of face recog-

nition). Another consideration is the possibility of nested or hierarchical classes,

where it is necessary to return multiple class labels for a given input. With all of

these issues in mind, we introduce the following comprehensive definition:

Definition 2. (The General Recognition Problem) Given image(s) I 2 R⌫, where ⌫
is the number of pixels, let F : R⌫ ! RD extract a D-dimensional feature vector x
under a set of feature extractor-specific assumptions �F:

x = F(I, �F), x 2 RD (1)

The task of a recognition system is to find a ranked set of integer class labels
considered to be the best matches to a given input feature vector x0. For a class
labeled c 2 N, let Xc be a set of training data {x1, . . .} composed of m feature
vectors, where m � 1. A class model Mc represents the information learned from
Xc, incorporating a set of modeling-specific assumptions �M. Let R be a matching
function that produces a similarity score sc by comparing x0 to Mc, taking into
account a set of matching-specific assumptions �R:

sc = R(x0,Mc(Xc, �M), �R), sc 2 R (2)

For any input x0, let S be a set of similarity scores {s1, . . .} generated by n evalu-
ations of R to compare x0 to n known class models Mc, where n � 1. Let L be a
labeling function that maps S to a ranked set of k class labels C = {c⇤1, . . .}, where
k � 1, taking into account any labeling-specific assumptions �L:

C = L(S , �L),C ( N (3)

where c⇤1 = 0 is reserved for the non-match label.

Def. 2 is consistent with the four common modes of recognition:

1. For pair-matching, Mc can consist of just features from a single training im-

age Xc = x1, with R a distance measure between vectors and k = 1, c⇤ 2 {0, 1}

(non-match and match). �L contains matching criteria (e.g. an estimated

threshold). Mc can also be a complex model over many images, matching

against the image pair as x0 (see the discussion of LFW in Sec. 3).
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2. For verification, we seek to check if an input image belongs to a class c

specified a priori, with training data defined as above for pair-matching.

R could be applied n times in a multi-view setting with multiple models,

matching against the set {Mc1 , . . .} for class c, where n � 1. In all cases,

8c⇤ 2 C, c⇤ 2 {0, c} and �L contains matching criteria.

3. Identification can also make use of the same training strategies as pair-matching,

but always applies R over a set of n di↵erent class models, where n � 2. It

returns at most one best answer with k = 1.

4. Search is similar to identification, but returns multiple labels, i.e. k > 1.

Next we define what it means for an algorithm to be metric.

Definition 3. (Metric Algorithm) Let A be an algorithm that solves the recogni-
tion problem. Let R be the matching function as defined in Def. 2. A is a metric
algorithm if and only if R satisfies all four properties of a metric as stated in Def. 1
for all possible inputs.

Defs. 2 & 3 serve as general tools for deconstructing the operation of individual

recognition algorithms, regardless of the context of recognition mode. Note that

many recognition functions fail to satisfy the metric requirement R : X ⇥ X !

R, making them inherently non-metric. For instance, several of the algorithms

considered in our meta-analysis (Sec. 3) make use of an SVM for pair-matching.

Because the metric learning problem itself is often framed as pair-matching it may

seem intuitive to assume that pair-matching with SVM would be metric. However,

when R from Def. 2 is examined for an SVM class model, Mc is a combination

over a set of feature vectors Xc from m di↵erent images, where m > 1. Thus for an

SVM, R : X ⇥ Xm ! R is not of the appropriate functional form to be metric.

In contrast, consider an algorithm where R is a Mahalanobis distance and where
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L in Eq. 3 selects argmax over multiple classes to produce a label. If viewed as a

function, the original mapping from input vector to label is not of the form required

for Def. 1. However, rephrasing this algorithm in terms of Def. 2 helps us reason

about its metricity by splitting the argmax from the matching function, allowing us

to conclude algorithms like this are metric, because R is metric which is all that is

required by Def. 3. The decomposition in Def. 2 helps us draw out such details.

3. Meta-Analysis of Algorithms for LFW

Our first case study of metric versus non-metric algorithms is Labeled Faces

in the Wild [2], a popular current data set for face recognition research. LFW is

ideal for testing pair-matching algorithms because it is inherently a pair-matching

problem. Using the terminology of Def. 2, each algorithm selects an appropri-

ate feature representation F, a model representation Mc, and a matching func-

tion R. Each input is a pair of feature vectors. For consistency with Def. 2,

we express this as the concatenation of the two fixed-length input vectors; thus,

x0 = F(I1, �F) k F(I2, �F) where k denotes concatenation. Likewise, each algo-

rithm may train on X =
n

x+1 , . . . , x
+
m, x�m+1, . . . x

�
2m

o

, a set of m matching pairs and m

nonmatching pairs of features. The labeling function L(S , �L) usually checks some

likelihood against a threshold ⌧ (learned as part of the labeling-specific assump-

tions, �L) to decide whether the pair matches, returning c⇤ = 1 if s1 > ⌧ and c⇤ = 0

otherwise, but certain algorithms may instead define something more complicated.

In this analysis, we consider only recent results for the “Image-restricted” set-

ting where outside data was used for feature extraction and in the recognition sys-

tem, but we briefly mention certain algorithms that take advantage of the unre-

stricted set. We chose this set of results because it represents several algorithms
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Figure 2: Recognition accuracy of algorithms on LFW. Horizontal axis is year of publication; some
cluttered years are slightly separated along the horizontal axis for clarity. “Side-info” refers to algo-
rithms that use outside data in the recognition system beyond feature extraction/alignment. “Claimed
to be metric” refers to publications where the algorithm is claimed to be metric, but upon closer in-
spection, does not meet Def. 3’s criteria for a metric learning algorithm. Even for pair-matching,
purely metric algorithms are not very competitive. Numbers inside each point correspond to bibli-
ography entries. Points marked with a * are not discussed here; references for them can be found on
our companion website: http://www.metarecognition.com/metric-nometric/.

that are both metric and non-metric, allowing us to compare the performance of

both. To avoid confirmation bias, we only investigate the results listed on the o�-

cial LFW results web page at the time of writing [35]. By graphing the accuracy

of these results over time, some interesting trends become apparent; see Fig. 2.

First, with the exception of [36], the non-metric algorithms perform better than

the algorithms that constrain themselves to be completely metric. We investigate

specific cases below. Second, the first results reported on LFW are from metric

learning algorithms, but more recent results are not metric and do not claim to

be metric. Note that in Fig. 2, we only consider an algorithm to be “metric” if it

satisfies Def. 3. Merely having “distance metrics” or “metric learning” in the paper

title is not enough to show this – though many of the papers claim to be metric,
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upon closer investigation, some of them have a non-metric R or only use metric

learning as a part of their overall computation. For example, some techniques

define an R that uses a local distance measure to combine information over di↵erent

neighborhoods, increasing performance while making R globally non-metric.

One example of an algorithm that turns out to be non-metric is [37], which

uses a custom logistic discriminant-based metric learning (LDML) approach. The

algorithm specifies a nearest-neighbor-like (MkNN) normalization strategy: during

testing time, each pair’s score is influenced by neighborhoods of matching pairs

around the two images being compared. In our words, they define a recognition

function RMkNN(x0,Mc(Xc, �M(x0)), �R). Note that Mc(Xc, �M(x0)) now changes at

test time: instead of RMkNN being fixed on a particular global model, each model’s

assumptions �M(x0) depend on the input testing pair. From this, it is easy to see

that LDML-MkNN is not globally metric: RMkNN no longer satisfies symmetry or

the triangle inequality because it depends on a model with assumptions that change

as a function of the ordering of an image pair being classified. This is important

because the extra label information available in the unrestricted set is what allows

MkNN to take advantage of the pairs in each neighborhood. This implies that by

making the algorithm non-metric, it can take advantage of the extra information in

LFW’s unrestricted set that is unavailable to the LDML-only algorithm.

Even without the MkNN step, we can make the case that the base implemen-

tation of LDML is non-metric. According to Sec. 2 of [37], the R defined by the

algorithm is R(x0,Mc, �R) = �(b�dW(F(I1, �F), F(I2, �F))), where b is a bias term,

� is the sigmoid function, and dW is the Mahalanobis-like measure. Rather than

actual covariance, W 2 RD⇥D is a learned matrix, part of model Mc. If W was

symmetric and positive-definite, it would result in a metric. However, in Sec. 2.3
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of [37], it is stated that no such constraints are placed on W. Thus, this learned

distance may not be even pseudometric. Note that later work [38] used these con-

straints and reported similar results.

Another example of an algorithm that turns out to be non-metric is the Co-

sine Similarity Metric Learning as presented in [9]. According to Sec. 1.2 of [9],

RCSML(x0,Mc(Xc, �M), �R) = (an)T (bn)
kank kbnk = cos ✓, where an and bn are T (F(In,1, �F))

and T (F(In,2, �F)) for some matrix T , part of model Mc that is learned to minimize

the distance between positive pairs and maximize the distance between negative

pairs. The algorithm’s labeling assumption �L is a threshold ⌧ over cos ✓, where

✓ is the angle between an and bn. However, cos is not a distance metric since it

may be negative and sc = 0 only implies that an and bn are perpendicular rather

than identical, which means cos only satisfies one of the four metric properties

(symmetry).

A significant advantage of CSML is that the bounds of RCSML 2 [�1, 1] allows

for a fast coarse-to-fine search for optimal parameters. In fact, many algorithms

use metric learning precisely for this reason. Here, CSML has found one way to

use this property while still performing better than other learning techniques, even

though CSML and other algorithms based on it [39, 40] are not actually metric.

Another system that incorporates metric learning as part of a pipeline that is not

completely metric is [41], which uses multiple one-shot similarity (OSS). In stan-

dard OSS, two models are trained at test time from canonical “negative” examples

with each image in the image pair as positives:

M̂c(Xc, �M) = {M1(F(I+1 , �F), x�1 , . . .),

M2(F(I+2 , �F), x�1 , . . .)}
(4)
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The scoring function ROSS(x0, M̂c(Xc, �M), �R) uses each model to classify its re-

spective input and averages the two scores. However, there is no clear way for

OSS to take advantage of labels when available, so OSS may be biased toward

pose, lighting, etc. Multi-OSS improves things by using multiple one-shot scores

for multiple labels at test time. Note that neither OSS nor Multi-OSS are met-

ric because each score depends on models created at testing time using di↵erent

assumptions/examples. This means that none of [41, 42, 43] are metric. How-

ever, [41] shows that OSS and Multi-OSS are more e↵ective than a variety of met-

ric techniques. The improvement is attributed to the extra information provided by

the class labels – something that the metric techniques cannot take advantage of.

According to Fig. 2, we see that the top scores come from non-metric algo-

rithms, whether the authors intended them to be metric or not. What makes non-

metric algorithms better? We emphasize that treating all samples alike may unnec-

essarily handicap an algorithm. For example, if one classifier is more invariant to

pose, that classifier may be better than a generic classifier at handling samples with

di↵ering pose. This approach is embraced in [44], where several classifiers are

trained across di↵erent subsets of the gallery for each pose combination to create

a pose-adaptive classification system. Similarly, a top performing algorithm on the

LFW unrestricted set, Probabilistic LDA (PLDA) [45], uses a probabilistic model

based on the observation that features extracted from an image can change with

respect to irrelevant variables such as pose, expression, and illumination. These

variables may dwarf the variation created by the actual change in identity in the

image pair. A perfect metric system must filter out such unwanted variation com-

pletely, which is impossible if all variables can influence score distances. In fact,

PLDA is not metric. We show through our own experiments that this algorithm
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violates the triangle inequality in Sec. 5.

Other probabilistic methods [46] explicitly model the inter-personal and intra-

personal variation within and between the face distributions. These methods and

others based on them [47, 48, 49] are currently among the top performers on

LFW’s Image-restricted protocol, but do not satisfy any of Def. 1’s metric proper-

ties at all. The closed form of their decision function is RJB(x0,Mc(Xc, �M), �R) =

aT
n W1an + bT

n W1bn � 2aT
n W2bn, where W1 and W2 are learned as part of Mc. This

function may be negative and is also not symmetric since aT
n W2bn , bT

n W2an in

general. Identity also only holds when W1 = W2, a special case equivalent to the

Mahalanobis distance. In fact, it can be explicitly shown [46, p.8] that a reduction

in performance occurs by forcing the distance measure to converge to Mahalanobis

distance, demonstrating that the non-metric algorithm captures more information.

Other non-metric algorithms include APEM [50], which trains a Gaussian mix-

ture model (GMM) on bags of spatial appearance features of every image in the

training set. The APEM algorithm adapts the feature selection process for each

face pair. In the APEM formulation, a new GMM is trained based on the features

from both images, which becomes part of the learned model assumptions. Thus,

even though APEM is the second-highest performer on the LFW Image-restricted

set without outside training data, it is not metric because its model incorporates

assumptions learned at test time as a function of the specific image pair.

State-of-the-art deep learning approaches are also worth considering. The al-

gorithm of Pinto and Cox [51] combines layers of several nonlinear filters applied

over the original image into each model. A collection of such models is learned

and the top-performing models are selected and combined. This algorithm is non-

metric for several reasons. For example, each layer includes a thresholding opera-
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tion to normalize its inputs, which ensures that the distance function is not globally

smooth and thus does not always satisfy the triangle inequality.

What about the algorithms that might be metric? Many researchers discuss and

formulate their metric learning algorithms in the sense of a globally metric feature

space while mentioning, almost as an implementation detail, that they constrain

their implementation to be metric only in local neighborhoods [10]. With no good

alternatives, this might seem to makes sense. The authors of [10] justify the choice

of a local model by arguing that it “is reasonable in the case of learning a metric for

the k-NN classifiers since k-NN classifiers are influenced most by the data items

that are close to the test/query examples.” However, the issue of the propagation

of the local/pairwise constraints is never addressed. It is well known that in met-

ric spaces, properties on local sets often have global implications. For example,

Menger [52] has shown that the embeddability of a metric into the space ln2 (i.e. the

Euclidean norm, with these parameters) is characterized by the embeddability of

all subsets of size n + 3 into ln2. Similarly, there is a wide range of metric embed-

dings where local subsets imply global properties, with results for exact metrics,

and similar properties even for embeddings with distortions [53]. Because the use

of only local constraints, not fully propagated, induces distortion into the global

metric space, we do not consider algorithms like the one in [10] to be truly metric.

However, several LFW results are unambiguously metric. For example, [54] is

a linear combination of two similarity measures learned only from face pairs. Sim-

ilarly, the recently-proposed PMML algorithm of [36] is a linear combination of

Mahalanobis distances learned from di↵erent regions of the face. The regularizer

encourages the learned matrix to be p.s.d, which makes it metric in both design and

implementation. Though it is not as competitive as recent non-metric algorithms,
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Figure 3: Recognition accuracy of algorithms on Caltech 101, with 15 training images on the top
plot and 30 on the bottom plot. The horizontal axis is year of publication; some cluttered years are
slightly separated along the horizontal axis for clarity. Note the metric algorithms are generally not as
accurate, but are more competitive when fewer images can be used for training. Numbers inside each
point correspond to bibliography entries. Note that because not all algorithms reported error bars, we
do not show any error bars in this plot. Points marked with a * are not discussed here; references for
them can be found on our companion website: http://www.metarecognition.com/metric-nometric/.

this algorithm is the top performing metric algorithm on LFW to date.

4. Meta-Analysis of Algorithms for Caltech 101

Our second case study examines the Caltech 101 data set [55]. Whereas LFW is

ideal for analyzing pair-matching algorithms, Caltech 101 is the most well known

object recognition set for identification and search scenarios, making it a useful

subject of study for these other classes of recognition. We split our meta-analysis

into two classes of top performing algorithms: those that use 30 training samples,
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the most possible, and those that use 15 training samples. To avoid confirmation

bias, we only report on the 30-sample algorithms compared in work organized by

Lim [56] and the additional algorithms compared in Yang et al. [57] and Jain et

al. [11]. Similarly, to compare algorithms that use 15 training samples, we only

consider those listed by Lim [56]. Like our analysis of LFW, we can draw some

interesting conclusions by considering the plots in Fig. 3.

Notably, there is a general absence of metric methods in Fig. 3. For the al-

gorithms making use of 30 training samples, only [58, 59] are metric. Among

the top results [56], there are 33 non-metric algorithms using 30 training samples

that have better accuracy than [59], which is metric. Yang et al. [60] achieved

accuracy of 84.3% in 2009 with a non-metric algorithm. Some very recent non-

metric algorithms [61, 62] come close to achieving that level of accuracy. Other

notable non-metric algorithms that were among the best at the time of publication

include [63, 64, 65, 66].

For 15 training samples, although several non-metric algorithms [57, 67, 64]

do outperform it, the technique of Jain et al. [11] is metric and performs well. In

Fig. 3, Jain et al. [11] appears three times. The best performing algorithm (73.7%

accuracy) of the three is one from a learned kernel which is the average of a pyra-

mid match kernel (PMK), a spatial PMK and two geometric blur kernels. The other

two (61% and 52.2% accuracy) are from a learned correspondence kernel of Zhang

et al. [68] and from a learned PMK kernel using SIFT, respectively. Eq. 6 in [11]

is the matching function that corresponds to R in Def. 2, which is metric when the

chosen kernel function 0(x, y) is metric. However, the lack of metric approaches

with larger amounts of training data suggests that good performance is achieved by

exploiting relationships beyond pairs of samples. A common strategy for Caltech
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101 is to learn a model for multiple classes (often using an SVM with a non-metric

kernel) in a 1-vs-All configuration, which is not of the appropriate form to even be

considered metric.

Analyzing two specific cases that approach the problem from a metric perspec-

tive, we again find clear violations of metric assumptions. Instead of learning a

global distance metric, the technique of Frome et al. [5] learns a local distance mea-

sure for every feature vector in Xc for all classes c (resulting in a set of assumptions

from �M(X1, . . . , Xm) that help build Mc) using sets of image triplets incorporating

a reference image, matching image, and non-matching image. This approach is

non-metric because it intentionally maintains asymmetry; Sec. 3 of [5] states “Let

f j,m be the mth feature vector from image j. We assume a basic asymmetric dis-

tance from a single feature vector f j,m from one image to the set of features Fi from

another.” The asymmetry is inherent in computing distance within image triplets

that are specific to each reference image f j,m.

As another example, Yang et al. [57] refer to kernel metrics throughout their

article and while they do use kernel metrics to build models, the overall recognition

system is non-metric at a structural level. Like the algorithm of Frome et al. [5],

this approach makes use of data dependent local models of groups, as opposed to

global models over all of the training data. Relating this back to Def. 2, R includes

group-sensitive kernel weights �g
i (Sec. IV.A.3 of [57]) as part of its matching-

specific assumptions �R(g) = {�g
i , . . . , �

g
n}, where n is the total number of kernels,

and g is a specific group. Asymmetry is again inherent in this formulation – by

changing the selected group g, there is no guarantee that di↵erent weights will

yield the same classification result.
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Figure 4: Results showing the distribution of violations of the triangle inequality for three recent face
recognition algorithms [1, 34, 45] applied over triplets of images sampled from the LFW [2] data set.
“Magnitude of Violation” refers to the di↵erence between the sum of the lengths of two sides of the
triangle and the third side that is larger than that sum, divided by the largest side of the triangle,
which puts each algorithm on a common basis for comparison. Note that in some cases, it does not
take a large sampling of triplets to find violations (PLDA), while in other cases, the occurrences are
rare (Tom-vs-Pete), requiring a much larger evaluation. PLDA and Tom-vs-Pete follow the same
distribution, suggesting there is some regularity to the pattern of violations.

5. Experimental Assessment of Metric Constraints

To gain a sense of how often the metric conditions are violated by good al-

gorithms on pair-matching tasks that appear to be metric in form, we conducted

a series of experiments. We considered three di↵erent algorithms applied to data

from LFW. The first algorithm is the “Tom-vs-Pete” classification approach of Berg

and Belhumeur [1], which learns a large set of identity classifiers, each trained

over images for just two people. As of this writing, the “Tom-vs-Pete” algorithm
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is among the top three algorithms on the LFW Image-restricted Training proto-

col. The second algorithm is the “Multi-Attribute Spaces” approach of Scheirer et

al. [34], where the statistical extreme value theory is leveraged to normalize scores

across large sets of attribute classifiers for recognition tasks. The third algorithm is

the “Probabilistic LDA” approach of Li et al. [45], which uses a probabilistic gen-

erative model to determine if two faces have the same underlying identity cause. It

is among the top six algorithms on the LFW Unrestricted Training protocol [35].

Violations of the triangle inequality are subtle, requiring us to perform a large-

scale search of the LFW image space. Triplets of images are generated by sam-

pling image combinations from the LFW set, including cases where matches and

non-matches occur. Using each algorithm, we calculated the match score for each

unique image pair in the triplet, and then checked if the scores satisfied the triangle

inequality. To ensure a proper evaluation of distance, the scores s1, . . . , sn from the

algorithms are processed with a simple transform T that forces a “smaller is better”

result: T (si) = s` � si, where s` is the largest score in the set {s1, . . . , sn}. We were

able to find multiple violations for each algorithm4; details are provided in Fig. 4.

Note that the frequency of violations is a function of the algorithm. In some cases,

it does not take a large sampling of triplets to find violations (PLDA), while in

other cases, the occurrences are quite rare (Tom-vs-Pete), requiring a much larger

evaluation. Further, we see that PLDA and Tom-vs-Pete follow the same distribu-

tion when the violations are expressed as magnitudes and binned accordingly. The

existence of this distribution suggests that there is some regularity to the pattern

of violations across algorithms. However, there is some algorithmic dependence,

4Visual examples of these violations can be found on this article’s companion website:
http://www.metarecognition.com/metric-nometric/
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Figure 5: Violations in symmetry for the Multi-Attribute Spaces algorithm [34] applied over the
Image-restricted Training Protocol of LFW. For each image pair, we calculated the score for image
I1 matching against image I2, and vice versa. If the scores subtracted from one another do not equal
0, they are considered a violation. Here we see all violations, organized by value of di↵erence.

since the Multi-Attribute Spaces algorithm follows a di↵erent distribution.

Understanding why these violations occur in a seemingly metric scenario is

important. Similar to the MkNN algorithm [37] discussed in Sec. 3, the Multi-

Attribute Spaces algorithm makes use of a local neighborhood of scores around

one particular image (bounded from below by a parameter ↵, and from above by �)

during a match, in order to build a good model for its normalization [34]. Thus, if

the neighborhood around image x is di↵erent from the neighborhood around image

y, symmetry is violated in the general case: �M(↵x, �x) ✓ {8s 2 R : ↵x  s  �x} ,

�M(↵y, �y) ✓ {8s 2 R : ↵y  s  �y}. Fig. 5 shows the prevalence of symmetry

violations in the Image Restricted Training protocol of LFW for this algorithm.

The formulation of Multi-Attribute Spaces also means there is no guarantee that

the triangle inequality will be satisfied: the local neighborhoods considered when

matching (x, y), (y, z) and (x, z) can be di↵erent from one another, often resulting

in sets of distances that cause a violation. For the experiments presented here,

the neighborhood around the first image is considered for the first two cases, and

the neighborhood around the second image is considered for the third case. Even
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PLDA and TvP TvP and Attributes PLDA and Attributes
3 Exact Matches 0 0 0
2 Exact Matches 0 1224 380
1 Exact Match 10 12612 9876
3 Identity Matches 0 13 30
2 Identity Matches 10 6207 1172
1 Identity Match 88 14238 22044

Table 1: Number of violations that are common between algorithms computed over the data from
Fig. 4. An “exact match” refers to the exact same image involved in the violations, while “identity
match” refers to images from the same person. We do not find any of the exact same triplets violating
the triangle inequality across algorithms, but there are numerous instances of common images and
identities appearing between all three algorithms. This suggests that some similarity judgements are
inherently data driven (supported by Tversky’s observations on local features and context dependency
during matching [24]), even in the case of automated algorithms.

under the weaker constraints of quasimetrics and semimetrics, the algorithm still

does not satisfy what is necessary to be considered either. Since the Multi-Attribute

Spaces algorithm intentionally exploits similarity around single image targets, it is

unclear what advantage, if any, would be provided by enforcing the constraints of

symmetry and the triangle inequality.

The statistics for the individual images involved in the violations of the triangle

inequality are also interesting. Table 1 summarizes the violations that are common

between algorithms computed over the data from Fig. 4. While we do not find

any of the exact same triplets violating the triangle inequality across algorithms,

there are still numerous instances of common images appearing between all three

algorithms. This suggests that beyond algorithmic design as a cause of non-metric

behavior, some similarity judgements are inherently data driven. With respect to

visual data, Tversky [24] notes that local features such as color, shape, line length

and orientation may detract from overall similarity matching in humans. Further,

Tversky also emphasizes that a change in scene context also corresponds to a sig-

nificant change in the measure of the feature space. We found that the violations
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Violation:
Tom-vs-Pete

Violation:
PLDA

A B C
    AB: 4.430035, BC: 4.77702, AC: 0.312347

     AB: 142305.442345, BC: 157798.549891, AC: 316598.691041

A B C

Figure 6: An example of a common identity occurring in violations of the triangle inequality across
algorithms. Note that each pair of images containing the same identity shows a change in scene
context (top: room change; bottom: indoor/outdoor). The numbers below each violation indi-
cate the distance between images in the “triangle”. An identity that yields only a subset of local
features for matching coupled with a change in context is one possible explanation for this phe-
nomenon [24]. Many more examples of such violations can be found on this article’s companion
website: http://www.metarecognition.com/metric-nometric/.

often include a change in context across the same identity within a triple (i.e. the

same person in two di↵erent settings) and that certain identities appear more fre-

quently than others in the violations. An example is shown in Fig. 6. This can

possibly be attributed to a combination of emphasis on local features and scene

context during matching for those identities in LFW.

We also conducted a second series of experiments to assess, on a common

feature basis, the accuracy and training time of a prevalent metric learning ap-

proach for visual recognition tasks versus a typical “o↵-the-shelf” non-metric su-

pervised method in machine learning. Our meta-analysis provides an indication

of general performance, but leaves open the possibility that the metric learning al-

gorithms simply made use of weaker features, and hence did not perform as well

as non-metric algorithms leveraging better features. To address this, we selected

three very well-studied machine learning benchmark feature sets for visual data:

USPS [72], Letter [73], and Satimage [73]. We trained one classifier for each set

using the Information-Theoretic Metric Learning (ITML) algorithm [69, 70] and
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Figure 7: Information-Theoretic Metric Learning versus “1-against-1” Multi-Class SVM. For this
experiment, we compared a prevalent metric learning approach [69, 70] to a typical “o↵-the-shelf”
choice for non-metric supervised learning [71] on a common feature basis, which our meta-analysis
does not directly provide. Across three very well-known machine learning visual benchmark sets
(USPS [72], Letter [73], and Satimage [73]), we observe a clear trend: Information-Theoretic Metric
Learning yields lower accuracies at the expense of extra time for training (shown inside each bar).

the “1-against-1” multi-class SVM with an RBF kernel provided by LIBSVM [71].

We set SVM parameters C and � using the values reported by Nguyen and Ho [74]

for USPS, and those reported by Hsu and Lin [75] for Letter and Satimage.

The results for the comparison can be seen in Fig. 7. For all three data sets,

ITML yields lower accuracies at the expense of extra time for training. Considering

the relative ease of the data sets and that SVM is an older approach, it is somewhat

surprising that ITML, a more recent algorithm that is the foundation of a variety of

metric learning work [58, 76, 7, 11], is not the best performing approach here. This

finding is consistent with previous studies found in the literature using multi-class

SVM as a point of comparison [77].

A further note should be made on the dimensionality of feature vectors used

for learning. We considered performing a more exhaustive experiment comparing

features for Caltech 101 and LFW from the best algorithms, but encountered a
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problem with respect to the limits of what data is feasible to compute with metric

learning. As described by Guillaumin et al. [37], available reference implemen-

tations for ITML and LDML (described in Sec. 3) are “intractable when using

600” or more feature dimensions. Even for the most standard o↵-the-shelf but

well-performing object recognition features (e.g. HOG), we must consider several

thousand dimensions for a data set such as Caltech 101. Thus, metric learning

approaches turn to dimensionality reduction to reduce the feature representations

before training. Of course, this introduces the risk of discarding information that

may be valuable for recognition. Moreover, even though ITML is provably convex,

this does not mean an optimal solution can be found in a practical amount of time

for a feature set.

6. Discussion

During the course of this work, we found that some problems and their corre-

sponding solutions do not even have the structural form necessary to be metric –

they compare input features to more complex models. Similar observations have

been made before [17, 78, 29]. In [78] it is proved “that under the Naive-Bayes

assumption, the optimal distance to use in image classification is the KL “Image-

to-Class” distance, and not the commonly used “Image-to-Image” distribution dis-

tances.” Moreover, even for the restricted recognition problem of pair-matching,

which at least initially looks as if it is metric, the best performing algorithms have

a model for “matched pairs” that is non-metric. Metric properties allow some pow-

erful mathematical machinery to be employed and, with e↵ort, any recognition

problem’s solution can be “made” metric – the question is if metric constraints

improve recognition performance. Our meta-analysis and experimental analysis of
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top-performing algorithms show violations of symmetry for some and violations of

the triangle inequality for others. With so many cases where performance improves

as metric conditions are relaxed (an observation supported by the pattern recogni-

tion literature [14]), we conclude that, in general, good recognition is non-metric.

However, this article should not be interpreted as suggesting that metrics have

no role in computer vision or that metric learning is not useful for recognition.

On the contrary, our analysis has shown that metric learning has provided interest-

ing first cut solutions. Furthermore, many good recognition algorithms use local

distance measures as the core of an overall non-metric algorithm. Learning met-

rics, at least locally, appears to be an e↵ective way to incorporate various types of

constraints. In many cases, the original feature space (Eq. 1) is transformed into

another locally normalized/metric feature space, before combining data, yielding a

non-metric but e↵ective scoring process.

One observation, which can be exploited in other vision work, is why we be-

lieve the problem is inherently non-metric. General recognition problems must

capture and model the uncertainty in the data and in the class definitions. They

must handle local variations in features, in sample density and in labeling. If, as

is true in the general setting, the data is not uniformly sampled with uniform error,

good recognition algorithms develop local distance measures in a way that may

result in asymmetric measures and/or measures that violate the triangle inequality.

Thus, even if one chooses to use local metric learning to help normalize the data,

one should also look for models that integrate multiple sources of information (in-

cluding side-information) and use them to model the regional variations and errors.

A good metric-based recognition algorithm would need to have approximately

uniform error. If its “learning” could transform an inherently non-uniform biased
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sampling and errors into a single representation with uniform errors, it would pro-

vide a near perfect “whitening” filter correcting the per-class biases and errors.

While it is true that in the limit, assuming i.i.d. samples, a metric plus nearest

neighbor classification has an error rate no more than twice the Bayes error rate,

we note that “in the limit” the infinite i.i.d. sampling requirement is e↵ectively re-

moving any sampling bias and providing uniform error. Most recognition problems

do not have the luxury of i.i.d. sampling nor can they wait for the limit of infinite

samples. Thus we believe it is important to develop robust features and models of

uncertainty/error for more e↵ective recognition algorithms.

We emphasize that this study is ongoing. The rapid evolution of learning al-

gorithms will likely lend new perspectives on this issue as the results reported for

Caltech 101 and LFW reach ceiling. We encourage interested readers to submit

new algorithms to be included in the meta-analysis through this article’s compan-

ion website: http://www.metarecognition.com/metric-nometric/.
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