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Abstract

The outreach of computer vision to non-traditional areas
has enormous potential to enable new ways of solving real
world problems. One such problem is how to incorporate
technology in the effort to protect endangered and threatened
species in the wild. This paper presents a snapshot of our
interdisciplinary team’s ongoing work in the Mojave Desert
to build vision tools for field biologists to study the currently
threatened Desert Tortoise and Mohave Ground Squirrel.
Animal population studies in natural habitats present new
recognition challenges for computer vision, where open set
testing and access to just limited computing resources lead
us to algorithms that diverge from common practices. We
introduce a novel algorithm for animal classification that
addresses the open set nature of this problem and is suitable
for implementation on a smartphone. Further, we look at a
simple model for object recognition applied to the problem
of individual species identification. A thorough experimen-
tal analysis is provided for real field data collected in the
Mojave desert.

1 Introduction
Computer vision is mature enough to create large impacts
in other fields. Standing on the shoulders of decades of
vision research, we can now develop tools that amplify other
scientists’ abilities, even across disciplines. Researchers in
diverse fields such as biology and ecology can now depend
on computer vision techniques to complement their existing
scientific approaches.

Despite our wishes, computer vision alone may never
“save the environment,” but it can play an indirect role in
its conservation by helping field biologists with their own
efforts. In this paper, we present a snapshot of our ongo-
ing work to design a system that enables field biologists to

Figure 1. A photograph exemplifying the challenges of identifying
targets in the Mojave desert in a real-world setting. Note that vegeta-
tion occludes much of this frame and changing shadows complicate
the background. The actual target, in this case a White-tailed Ante-
lope Squirrel, is only a few pixels wide and is not facing the frame;
see cutaway in the lower-left corner. We must classify whether this
target is a squirrel, a tortoise, or neither; this is inherently an open
set problem.

conduct animal population surveys using conventional hard-
ware more cheaply and efficiently than manually conducting
field observations. We are working with a diverse, interdisci-
plinary team; this work reflects the contribution of biologists,
scientists, and land managers.

The purpose of conducting animal population surveys
is to generate statistics about resident animal populations,
which are important for many reasons [2, 22]. In particular,
fauna surveys help public officials gauge the potential impact
of planned additions, expansions, and developments to rural
or sensitive land, and they help biologists and ecologists to
better understand how various animal populations impact
each other and the environment. Continuous animal census
statistics also give public officials tools to monitor population
changes over long periods of time. It is costly to monitor
predation rates and habitat saturation due to the use or lack
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of numbers of adequate personnel and often the decisions are
based on assumptions of populations densities and signs of
predation. These statistics are vital for measuring the impact
of human-caused climate change, pollution, deforestation,
and the effects of continued urbanization. If left unchecked,
these effects reduce biodiversity in affected environments [7].
Such changes are especially devastating to animals listed on
the US Fish and Wildlife Service endangered species list.

Of particular interest to field biologists is the active pop-
ulation of Mohave Ground Squirrels, Desert Tortoises, and
other threatened and endangered animals within the bound-
aries of the Edwards Air Force Base (EAFB) reservation.
The Mohave Ground Squirrel is currently listed as “Threat-
ened” and is native only to the western Mojave Desert [12],
the smallest range of any ground squirrel species in the
US [21]. The Desert Tortoise is also in decline—some areas
that used to contain over sixty tortoises per km2 now contain
1 to 12 per km2 by recent estimates [9]. To address these
issues, EAFB harbored an ongoing monitoring and conserva-
tion effort between 2003 and 2007 to conserve the Mohave
Ground Squirrel [12] and contributed to similar programs
designed to conserve the desert tortoise [17]. Practically,
it is difficult to gain an accurate assessment of these ani-
mal populations because fauna surveys traditionally depend
on complicated quantitative models [24], manual observa-
tion [3] or actual trapping [22], which can be expensive,
invasive, and time-consuming. As a result, these surveys
can provide insufficient coverage of the survey region. Au-
tomated surveys do not have these issues. Unlike human
volunteers, cameras never grow tired, never look away, and
can be deployed in great numbers to survey continuously
over long periods of time.

To perform automated population studies, biologists must
traditionally invest scarce funding into complicated, special-
ized hardware. They must also invest their time and energy
– both of which are better spent doing research – setting up
such capture systems, testing parts, and fixing problems. In-
correctly configured capture hardware may lead to poorly
captured data, skewing the results of the survey. However,
with the proliferation of cheap cameras such as those found
on smartphones, researchers can begin to use familiar, in-
expensive capture hardware laying around the lab. When
combined with the commoditization of vision algorithms,
this can help solve some of these problems.

In our work, we use lightweight algorithms that run on
inexpensive mobile hardware. Our eventual goal is to de-
velop the system to the point where field biologists can use
inexpensive smartphones or cameras connected to laptops to
easily gather census data. Images and video are periodically
captured, animals within the frame are detected, and their
types are determined using feature extraction and classifi-
cation algorithms. A second stage classifier identifies the
specific species, if needed. Finally, the results are tabulated

and presented back to the biologists.
Real-world vision tasks are not trivial. The environment,

the experiment, and the animal subjects themselves provide
significant vision obstacles. In the Mojave desert, our system
faces complex backgrounds and varying illumination. Our
images exhibit ambient movement from shadows and plants
swaying in the breeze. Occlusion from plants, shrubs, and
other vegetation limits the viewing distance. The behavior
and geometry of the animals themselves also make classi-
fication difficult—due to foreshortening, animals will have
differing scales, requiring algorithms that are scale-invariant.
Animals may be self-occluded and may assume any pose
or posture. Fig. 1 highlights some of these challenges. In
this picture, even a human may have a hard time finding the
small squirrel among the rocks in the scene.

When testing our system, we are only interested in a
few species such as the Mohave Ground Squirrel and the
Desert Tortoise. However, there are many other desert ob-
jects that may come into contact with our sensors: insects,
lizards, snakes, birds, tumbleweeds, thirsty humans, and so
on. When classifying target samples, as we determine what
kind of animal they are, we must also determine whether they
are interesting at all. As such, an animal population study is
an inherently open set problem because it is impractical to
create a training data set for all possible negative examples
(i.e. we cannot create a set containing “everything that is not
a Mohave Ground Squirrel”) [6]. This problem complicates
classification algorithms that assume that examples from
all possible negative classes are known at training time (for
example, a multiclass SVM).

Our main novel contribution is designing and implement-
ing a lightweight system to recognize animals in the desert.
We introduce a novel algorithm based on LBP and SIFT for
feature extraction, and we utilize 1-class SVMs that re-frame
the recognition scenario as an open set problem. We also
examine the feasibility of individual species identification us-
ing another simple object recognition approach. Finally, we
present an analysis of our system’s recognition performance
using real field data collected in the Mojave desert.

2 Related work
Other systems exist to gather animal population statistics, but
none of them are applicable to our situation. Some systems
require massive amounts of computing resources to perform
well. Others make inappropriate assumptions, for example,
only tracking one target at a time in the frame or assuming
a known number of targets. Note that very few existing
survey systems actually classify the target objects, instead
focusing on just detection and segmentation. This may be
fine for some constrained problems, but because we intend
our system to observe many different kinds of animals, we
must take extra pain to classify each.

In [11], Kembhavi et al. uses vision techniques to track
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the Satin Bowerbird’s courtship across 200,000 frames of
video. Primarily concerned with localizing and counting
these birds, this work’s segmentation method requires con-
sidering every pixel for every frame in the video to build
the background model. This is computationally expensive
in terms of time, CPU, and memory; to make this feasible,
they used a workstation cluster to process multiple videos in
parallel. According to [11], “If the entire [model] structure
were to be in memory at one time, it would require 100s of
GB of memory, rendering this task impossible for even a
modern PC.” We wish to use lightweight techniques suitable
for near-real-time processing using laptops and smartphones
without having to rely on computing clusters.

Other work by Dickson et al. focuses on segmenting
seabirds [4, 5] on a small stretch of seaside cliffs. To segment
birds from video, they use region-based segmentation with
Markov random fields; for still images, they use haar-like
features to detect birds. Later work by Qing et al. [16] uses
boosted HOG+LBP features and SVM classifiers. They do
not attempt to classify the animals.

In [3], Cohen et al. present a preliminary system with the
similar goal of detecting and identifying threatened animals
in the Mojave desert from an engineering and design perspec-
tive. This work also briefly outlines methods for identifying
individual tortoises (i.e. determining whether a specific indi-
vidual was seen before), which can provide field biologists
with more insightful data [2]. To segment foreground from
background, they describe both a codebook segmentation
method and a method based on running average background
subtraction and bounding box merging. They do not describe
the method used to identify species in the captured video,
but they do mention that targets are classified based on pixel
statistics (“size and color information”). Such statistics may
not be appropriate in our case where foreshortening causes
targets to assume varying size and where varying lighting,
occlusion, and shadows changes the subjects’ color.

Biologists can alternatively use off-the-shelf commercial
surveillance and tracking software, but because it is usu-
ally designed for law enforcement and security scenarios,
such software is often ill-suited to performing fauna surveys.
For example, “Knight” by Shah et al. [20] can detect and
track multiple targets through multiple cameras. However,
in being designed for “real world scenarios ranging from
railway security to law enforcement,” it only distinguishes
between individual people, groups of people, and vehicles
using “color, shape, and motion models.” As before, even
if classifiers for individual species may be trained, simple
statistics alone may not capture enough information to be
useful in our scenario.

Some researchers improve accuracy by keeping the hu-
mans “in the loop,” having humans perform tasks that are
difficult for a purely automated system. Branson et al. [1]
gives human operators high-level questions about the an-
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Figure 2. An overview of the animal classification approach. The
algorithm is designed to be suitable for near-real time processing
on a smartphone for field work, yet accurate enough to yield useful
recognition results.

imals being classified (“Is the tail bushy? Is it uniformly
brown?”) while computer vision techniques narrow the de-
cision tree. This provides stronger performance at the cost
of requiring operator intervention. To classify, they use
per-class 1-vs-all SVM classifiers. This makes this method
applicable only to closed-set recognition problems.

3 A Lightweight but Effective Ap-
proach to Recognition

As noted above in Sec. 1, animal population studies in natu-
ral habitats present new recognition challenges for computer
vision. Specifically, we must address the open set nature of
recognition in this scenario, as well as consider classes of
algorithms that are “lightweight,” meaning they are suitable
for quick processing on hardware as limited as a smartphone.
At this stage in our project, recognition is a two step process:
we first determine if an object in a scene is an animal of
interest (Squirrel or Tortoise) and then attempt to distinguish
between species (Mohave Ground Squirrel vs. White-tailed
Antelope Squirrel vs. Round-tailed Ground Squirrel) if ap-
propriate. Below, we introduce a novel approach for test
animal classification and describe our strategy for individual
species identification.

3.1 Animal Classification
For animal classification, we make use of a feature-based
learning approach incorporating an LBP-like operator and
1-class Support Vector Machines. An overview of this ap-
proach is shown in Fig. 2. The underlying features used for
classification are generated by extracting points of interest
(PoIs) from the images using Difference of Gaussians as
proposed in [13] for the well-known SIFT method, and then
computing an LBP-like [18] feature descriptor in a window
around each detected PoI, somewhat similar to [8]. Fea-
ture vectors for learning are composed of histogram bins
that summarize the feature descriptor information for each
sample image.

Theoretically we could just use SIFT features, but they
are “invariant” only for planar objects and our animal objects
are not particularly planar. Instead, we opt for an LBP-like
feature computation. By starting with the same PoIs that
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SIFT uses, we gain the stability of the localized feature re-
gions across objects while leveraging a stronger descriptor.
This approach is designed to produce good results with lim-
ited computation given the difficulty of this problem: only
pixel neighborhoods around each PoI are considered for fea-
ture computation. In this work, we rely on the PoIs to focus
on a particular object since at this point in our project, we
are just concentrating on recognition. However, more sophis-
ticated object detection applied over broad scenes can also
accomplish this.

More formally (drawing from [18]), consider a pixel with
neighbors j = 1 . . . n. Here, c stands for the center pixel of
a PoI determined by the SIFT algorithm of [13] and j for a
neighboring pixel. We need to extract a feature representa-
tion for each PoI. For each pixel c, the generalized binary
representation is defined as:

GR(c) =
n∑

j=1

gj(c, j) · 2j · (1)

In the standard LBP pattern, a neighboring pixel is defined as
a label, 0 or 1, indicating a comparison of its value with the
center pixel value c. If the neighboring pixel is greater than
c, it is assigned a label of 1; otherwise, it is assigned a label
of 0. Using this simple comparison makes LBP undesirably
sensitive to noise and scale. The LBP-like operator we use
here improves on LBP in three ways. First, we do not com-
pare two individual pixel intensities; rather, we compare the
average intensities of neighborhoods of pixels that surround
the two. Second, we compare intensities with a threshold,
eN , which is determined by a statistical analysis of the ex-
pected level of noise for the sensor data when summed or
blurred to level N . Finally, we change the order that neigh-
borhoods are compared when generating the descriptor to
ensure that any two neighboring directions in the image are
never more than a factor of 4 away in the resulting binary
encoding. Each label of this new LBP-like operator is:

gj(c, j) =

{
1 if ‖S(j)− S(c)‖ > eN

0 otherwise
(2)

where S(x) is the average intensity of the neighborhood of
pixels surrounding x, as in [18]. If the difference between the
center neighborhood intensity and the other neighborhood
intensity is more than the threshold, the neighboring pixel is
assigned a label of 1. This gives us a binary representation of
the center pixel corresponding to the pattern of comparisons
of neighborhoods around the center pixel, enabling us to use
the surrounding pixels in a more meaningful way than stan-
dard LBP. The major advantages of this feature descriptor
over standard LBP for our problem are:

1. Scale Invariance – we observe a very large variation in
object scale for real-world images collected in the field,

with animals moving freely towards and away from the
acquisition device. This is addressed by calculating
the average intensity of the neighborhood of pixels
surrounding a center pixel at different operator sizes
(3x3, 5x5, 7x7, etc.), which captures multiple scales.

2. Noise Tolerance – our imagery is captured in the field,
so we expect some measure of minor variation and
noise. The threshold eN defined by Eq. 2 addresses
this issue by making sure only statistically significant
differences are considered. Comparing neighborhoods
of pixel values also reduces the effect of small-scale
sensor noise.

3. Variation Tolerance and Rotation Invariance – with
no control over our animals of interest, different po-
sitions and poses will be observed. The alternative
numbering of neighborhood pixels (Fig. 2) ensures that
any two neighboring directions in the image are never
more than a factor of 4 away in the resulting encoding.
This increases stability if there are minor variations in
the edge features. Adjustment of the operator scale
provides a measure of rotation invariance by anchoring
pixel orientation.

Each object may have varying numbers of SIFT PoIs,
and thus we may have varying numbers of feature vectors
generated by our LBP-like operator. The single-vector repre-
sentation of the object is the normalized sum of the vectors
generated by the LBP-like operator on each PoI.

Once we have a feature vector for a given sample, we can
apply machine learning. The 1-class SVM introduced by
Schölkopf et al. [19] adapts the familiar SVM methodology
to the open set recognition problem. With the absence of
a second class in the training data, the origin defined by
the kernel function serves as the only member of a “second
class.” The goal then becomes finding the best margin with
respect to the origin. The resulting function f after training
takes the value +1 in a region capturing most of the training
data points, and −1 elsewhere.

Let p(x) be the probability density function estimated
from the training data {x1, x2, . . . , xm | xi ∈ X}, where X
is a single class. A kernel function Ψ : X → H transforms
the training data into a different space. To separate the
training data from the origin, the algorithm solves a quadratic
programming problem for w and ρ to learn f :

min
1

2
‖w‖2 +

1

νm

l∑
i=1

ξi − ρ (3)

subject to

(w ·Ψ(xi)) ≥ ρ− ξi i = 1, 2, . . . ,m ξi ≥ 0 (4)

In the 1-class SVM, p(x) is cut by the margin plane min-
imizing Eq. 3 and satisfying Eq. 4. Regions of p(x) above
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Figure 3. The 1-Class SVM approach for open set problems. In
traditional classification problems, we often consider a closed set,
where all possible classes are known to the classification system.
For the problem we consider here, we must assume that our can-
didates for recognition can be any creature found in the Mojave
desert (squirrels, tortoises, bobcats, humans, etc.). Acquiring the
appropriate training data for all possible animals is not feasible,
thus, we build classifiers only for the animals of interest.

the margin plane define positive classification and capture
most of the training data. The kernel function Ψ impacts
density estimation and smoothness. The regularization pa-
rameter ν ∈ (0, 1] controls the trade-off between training
classification accuracy and the smoothness term ‖w‖, and
also impacts the choice and number of support vectors.

We use the 1-class SVM formulation to train our animal
classifiers. The 1-class SVM gives us the flexibility to han-
dle any “unknowns” that might be submitted to a classifier
(Fig. 3). For our problem, these could be any new object that
enters the desert scene: bobcats, rabbits, coyotes, snakes,
etc. Acquiring the appropriate training data for all possi-
ble animals is not feasible, thus, we build classifiers only
for the animals of interest, and make a positive or negative
determination with respect to them.

3.2 Individual Species Identification
A particular challenge of this project is the need to distin-
guish between different species of ground squirrel. Experts
use visual criteria to distinguish between squirrels in the
Mojave desert (shown in Fig. 4). The common White-tailed
Antelope Squirrel has a white lateral stripe on each side of
its body, as well as tufts of white hair on the backside of its
tail, and ears that stick up a bit higher compared to the two
other ground squirrels found in the Mojave. The Mohave
Ground Squirrel is uniformly brown on the sides, with light
fur on the back of the tail, but not as white as the Antelope
Squirrel. The Round-tailed Ground Squirrel is very similar
in appearance to the Mohave Ground Squirrel. The main
differentiating feature is its tail, which is longer, thinner,

White-tailed 
Antelope Squirrel 

Mohave Ground 
Squirrel 

Round-tailed 
Ground Squirrel 

White lateral 
stripe  on each 
side of body 

Tufts of white 
hair on 
backside of tail 

Ears stick up a bit 
higher than those of 
the others 

Uniformly 
Brown 

Light fur on 
back of tail 

Longer thinner 
tail compared 
to MGS 

Figure 4. Segmented images and distinguishing characteristics for
three different species of ground squirrel. From the left: White-
tailed Antelope Squirrel, the Mohave Ground Squirrel, and the
Round-tailed Ground Squirrel. Our experiments show that we can
distinguish between these three species with approximately 78%
accuracy.

and darker. We note that the Round-tailed Squirrel lives to
the east of EAFB, but is considered here due to its striking
similarity to the Mohave Ground Squirrel. Taking these fea-
tures into consideration, we selected a different recognition
algorithm for this task.

The “V1-like” recognition algorithm of Pinto et al. [14,
15] is a simple biologically inspired model of the known
properties of the primate first stage visual processing area.
For this algorithm, each training image is first filtered by an
array of 96 Gabor wavelets, generating a large set of feature
vectors. PCA is used to reduce the dimensionality of these
feature vectors prior to using them to train a multiclass SVM.
Due to the nature of this method of classification, several
training images are used for each class so as to increase the
accuracy of the SVM’s convergence. In the model of Pinto
et al., the input images during testing are treated the exact
same way, with each resulting feature vector classified by
the trained SVM. We chose this algorithm as a second-stage
classifier for its relative simplicity and excellent baseline
performance on popular data sets. Note that assuming we
know that a sample is a squirrel, determining its species is a
closed set problem.

4 Evaluation
An exciting aspect of this work is the intersection between
field work in biology and computer vision. For our exper-
imental evaluation, we relied upon our field biologists to
collect animal data in the Mojave desert, but also used a
recent imaging technique to create semi-synthetic data that
captures even more environmental variation. Our data col-
lection methodology and experimental results are described
below.

4.1 Data Collection
Our set of squirrel data was collected during fieldwork in
April 2010 at the height of the Mohave Ground Squirrel
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season around the Fort Irwin area. The data was collected as
MPEG video using a trail camera system from RECONYX1.
Animals were lured into the field of view using feed posi-
tioned at the center of the captured frames. In total, 5,362
frames were extracted from the provided videos, includ-
ing images of the White-tailed Antelope Squirrel, Mohave
Ground Squirrel and Round-tailed Ground Squirrel. Our set
of tortoise data consists of several long video sequences of
different desert tortoises from various sites around the Amer-
ican Southwest, also collected during fieldwork in 2010.
In total, 450 frames of tortoises were extracted from those
videos for our evaluation. Additional public data collected
from the web was used for the following other animals (50
images each): bobcat, coyote, Gila monster, rabbit, and
snake. For animal classifier training, 100 images were se-
lected from the squirrel or tortoise pool at random. For
testing, 50 images were submitted to the classifiers for each
animal (for the squirrel and tortoise classes, these images
did not overlap with the training data).

To increase the scope of environmental conditions in the
scene for laboratory testing, we adapted “semi-synthetic
modeling,” a technique used in human biometrics [10, 23].
Semi-synthetic models use measured data, such as 2D im-
ages or 3D renderings of an object as the model, but rather
than modeling the imaging system, they are incorporated into
a real system for evaluations. This is called semi-synthetic
because the underlying data is no longer really a synthetic
model, but a re-rendering of measured data instead. Semi-
synthetic models are derived from individual source object
data and hence can capture properties that are never explic-
itly modeled, e.g. distributions of textures, geometry, and, in
the case of our fauna problem, hair.

When collecting long-range data for animal population
studies, several problems exist including weather and atmo-
spheric effects (distortion caused by thermal aberrations in
the atmosphere). Using a version of the above methodology,
we collected the data necessary to show the feasibility of
our algorithms when considering animals at a distance. We
re-imaged our data set outdoors at 100M on a sunny day us-
ing the setup described in [10, 23]. This consisted of a 4000
ANSI lumens projector with a resolution of 1024× 768 pro-
jecting into a custom built screen, imaged by a Canon EOS
7D Camera with a Canon 2× adapter and a Sigma 800mm
F5.6 lens. The resulting images (an example is shown in
Fig. 5) exhibited realistic levels of atmospheric blur, as well
as some motion blur as the wind made contact with the tri-
pod (an important consideration during image acquisition).
This produced 450 images across all animals in the same
configuration as described above for the original data.

1http://www.reconyx.com/

Figure 5. To increase the scope of environmental conditions in
our laboratory testing, we adapted an evaluation technique from
human biometrics: semi-synthetic models [10, 23]. Semi-synthetic
models are derived from individual source object data, but also
capture important conditions such as weather and atmospheric
effects that impact long-range data for animal population studies.
We re-imaged our data set outdoors at 100M on a sunny day, with
a setup that consisted of a 4000 ANSI lumens projector with a
resolution of 1024 × 768 projecting into a custom built screen,
imaged by a Canon EOS 7D Camera with a Canon 2× adapter and
a Sigma 800mm F5.6 lens. This is an example image of our setup;
for evaluation, we crop the image and pass it to the classifiers.

4.2 Experimental Results
One advantage we have in this work is that we do not need
to achieve perfect accuracy on a per frame basis, which
would be ideal in other applications like security. In an
animal population study, as long as we can track an animal
across a contiguous sequence of captured frames, it can be
counted correctly if it is recognized the majority of the time.
The various precision-recall curves we show below for our
proposed animal classification approach reflect acceptable
accuracies for the recognition task.

To gain a sense of the impact of potential confuser an-
imals on accuracy, we performed a series of classification
experiments on a per animal basis. To begin, we trained
1-class SVMs with RBF kernels for both squirrels and tor-
toises and then tested each using features derived from all
of the animals in our pool. Each curve in Figs. 6 – 8 reflects
accuracies at various precision-recall points for 50 negative
samples from the confuser animal and 50 positive samples
from the animal of interest. Curves were plotted by varying
a threshold over the actual decision scores from each SVM.
For comparison, we ran a baseline classification experiment
using a reference implementation of SIFT [13]. Typically,
SIFT features from different images are compared using a
distance metric. To create a decision-based classifier, we
select the best distance score out of all of the comparisons
to the same training set images used for the SVMs. Curves
are again plotted by varying a threshold, this time over the
distance scores. In all cases, our novel LBP-like features +
1-Class SVM algorithm significantly outperforms SIFT. In
the long distance semi-synthetic data test shown in Fig. 7,
SIFT simply fails.

We also examined the feasibility of individual species
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Figure 6. Precision-Recall curves depicting the ability of our squir-
rel classifiers to discriminate between potential confuser species
and the animal of interest. Curves towards the upper right of each
plot indicate higher levels of accuracy. (a) shows baseline results
for SIFT classification using a distance metric and sliding threshold.
(b) shows the results for our proposed approach with an LBP-like
operator with a 5× 5 neighborhood. Our approach produces sig-
nificantly higher levels of accuracy in all cases.

recognition for ground squirrels. Using a test set of 100
images for each of the three squirrel species shown in Fig. 4,
we ran two series of experiments. In the first experiment, we
used the basic V1-like algorithm2 and an experimental pro-
tocol that chooses a random set of testing and training data
(45 training, 30 testing) from 100 images of each squirrel.
For testing, each candidate image is submitted to a 3-class
SVM; the classifier that produces the best score indicates
the determination of species. We performed 10-fold cross
validation to achieve an average accuracy of 76.44%. In
our second experiment, we used a modified version of the
V1-like algorithm (provided by the same software) that in-
corporates additional histogram features along with the final
outputs to increase accuracy. This experiment followed the
same training/testing procedure as the original, achieving an
average accuracy of 77.89%. Thus, we can conclude that

2http://pinto.scripts.mit.edu/Code
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Figure 7. Precision-Recall curves depicting the ability of our squir-
rel classifiers to discriminate between potential confuser species
and the animal of interest for our semi-synthetic data set. While
the baseline SIFT approach essentially fails, our approach, with an
LBP-like operator with a 5× 5 neighborhood, produces high accu-
racy in all cases (note that for classification involving Gila monsters
and snakes, a precision and recall of 1 was always achieved).
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Figure 8. Precision-Recall curves depicting the ability of our tor-
toise classifiers to discriminate between potential confuser species
and the animal of interest. Since tortoises are larger than squirrels,
we make use of a larger 9× 9 LBP-like operator window here.

while individual species identification can be accomplished
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with a simple approach, more work must be done to reach
higher levels of accuracy.

5 Conclusion
This paper presented a snapshot of our interdisciplinary
team’s ongoing work in the Mojave Desert to build new
vision tools for field biologists for the study of the currently
threatened Desert Tortoise and Mohave Ground Squirrel.
Besides the obvious application to a real-world problem, an-
other goal of this work is to highlight the outreach potential
of computer vision to other areas of science. Even though
our algorithmic approach is intentionally simple so it runs on
limited hardware, it still produces results that are meaningful
enough for field biologists studying animals in the Mojave.
Many existing vision solutions can be used immediately for
other sciences even though accuracies are lower than what is
expected for other application areas.

We emphasize that this project is still underway. The
focus of the next phase will be creating a good tracking and
detection system and incorporating these algorithms into a
mobile smartphone device that will be used in the field for
a variety of recognition tasks. While this paper focused on
recognition, object detection is still very much of interest
here. We are working towards a lightweight object detection
approach beyond just relying upon the PoIs from the SIFT
method. And finally, as scientists, we are excited about
the potential of this approach to generate useful biological
studies that will assist in the ongoing conservation efforts
for the Desert Tortoise and Mohave Ground Squirrel.

6 Acknowledgments
The research reported in this document was supported by
Air Force SBIR FA9302-12-C-0002.

References
[1] S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder,

P. Perona, and S. Belongie. Visual Recognition with Humans
in the Loop. In ECCV, Sept. 2010.

[2] T. Clutton-Brock and B. C. Sheldon. Individuals and Pop-
ulations: the Role of Long-term, Individual-based Studies
of Animals in Ecology and Evolutionary Biology. Trends in
Ecology and Evolution, 25(10):562 – 573, Sept. 2010.

[3] C. Cohen, D. Haanpaa, S. Rowe, and J. Zott. Vision Al-
gorithms for Automated Census of Animals. In AIPR, Oct.
2011.

[4] P. Dickinson, R. Freeman, S. Patrick, and S. Lawson. Au-
tonomous Monitoring of Cliff Nesting Seabirds Using Com-
puter Vision. In Int. Wkshp. on Distributed Sensing and
Collective Intelligence in Biodiversity Monitoring, Dec. 2008.

[5] P. Dickson, C. Qing, S. Lawson, and R. Freeman. Automated
Visual Monitoring of Nesting Seabirds. In Workshop on Visual
Observation and Analysis of Animal and Insect Behavior,
Aug. 2010.

[6] R. P. Duin and E. Pekalska. Open Issues in Pattern Recogni-
tion. In M. Kurzynski, E. Puchala, M. Wozniak, and A. Zol-
nierek, editors, Computer Recognition Systemsn, pp 27–42.
Springer, 2005.

[7] Environmental Protection Authority. Terrestrial Biological
Surveys as an Element of Biodiversity Protection. Technical
report, Environmental Protection Authority, Perth, 2002.

[8] M. Heikkilä, M. Pietikäinen, and C. Schmid. Description of
interest regions with local binary patterns. Pattern Recogni-
tion, 42(3):425 – 436, 2009.

[9] R. Inman, K. Nussear, and C. Tracy. Detecting Trends in
Desert Tortoise Population Growth: Elusive Behavior Inflates
Variance in Estimates of Population Density. Endangered
Species Research, 2009.

[10] V. Iyer, S. Kirkbride, B. Parks, W. Scheirer, and T. Boult. A
Taxonomy of Face Models for System Evaluation. In IEEE
AMFG, June 2010.

[11] A. Kembhavi, R. Farrell, Y. Luo, D. Jacobs, R. Duraiswami,
and L. Davis. Tracking Down Under: Following the Satin
Bowerbird. In IEEE WACV, Jan. 2008.

[12] P. Leitner. Current Status of the Mohave Ground Squirrel.
Trans. Western Section of the Wildlife Society, 44, 2008.

[13] D. Lowe. Distinctive Image Features From Scale-Invariant
Keypoints. IJCV, 60(2):91–110, 2004.

[14] N. Pinto, D. Cox, and J. DiCarlo. Why is Real-World Visual
Object Recognition Hard? PLoS Computational Bio., 4(1),
2008.

[15] N. Pinto, J. DiCarlo, and D. Cox. How Far Can You Get
With a Modern Face Recognition Test Using Only Simple
Features? In IEEE CVPR, June 2009.

[16] C. Qing, P. Dickinson, S. Lawson, and R. Freeman. Automatic
Nesting Seabird Detection Based on Boosted HOG-LBP De-
scriptors. In IEEE ICIP, 2011.

[17] S. Sanchez. Desert Tortoises Get ‘Head Start’ to Survival.
Technical report, Edwards Air Force Base, 2008.

[18] A. Sapkota, B. Parks, W. Scheirer, and T. Boult. FACE-
GRAB: Face Recognition with General Region Assigned to
Binary Operator. In IEEE Computer Society Workshop on
Biometrics, June 2010.

[19] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and
R. Williamson. Estimating the Support of a High-dimensional
Distribution. Technical report, Microsoft Research, 1999.

[20] M. Shah, O. Javed, and K. Shafique. Automated Visual
Surveillance in Realistic Scenarios. IEEE Multimedia, 14(1),
2007.

[21] G. R. Stewart. Petition to list the Mohave Ground Squir-
rel (Spermophilus mohavensis) as a Federally Endangered
Species. Technical report, Defenders of Wildlife, 2005.

[22] G. Thompson and S. Thompson. General Terrestrial Fauna
Surveys Protocol. Technical report, Edith Cowan University,
2008.

[23] V. Iyer and W.J. Scheirer and T.E. Boult. Face System Evalu-
ation Toolkit: Recognition is Harder than it Seems. In IEEE
BTAS, Sept. 2010.

[24] J. Westervelt, B. Hannon, S. Levi, and S. Harper. A Dynamic
Simulation Model of the Desert Tortoise (Gopherus agas-
sizii) Habitat in the Central Mojave Desert. Technical Report
97/102, US Army Corps of Engineers, 1997.

8


