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Abstract

When implementing real-world computer vision systems,
researchers can use mid-level representations as a tool to
adjust the trade-off between accuracy and efficiency. Unfor-
tunately, existing mid-level representations that improve ac-
curacy tend to decrease efficiency, or are specifically tailored
to work well within one pipeline or vision problem at the
exclusion of others. We introduce a novel, efficient mid-level
representation that improves classification efficiency without
sacrificing accuracy. Our Exemplar Codes are based on
linear classifiers and probability normalization from extreme
value theory. We apply Exemplar Codes to two problems:
facial attribute extraction and tattoo classification. In these
settings, our Exemplar Codes are competitive with the state
of the art and offer efficiency benefits, making it possible to
achieve high accuracy even on commodity hardware with a
low computational budget.

1 Introduction
As computer vision researchers, we have a plethora of al-
gorithms and pipelines available to solve many real-world
problems from face detection to object recognition. And yet,
those who actually implement these state-of-the-art systems
on conventional hardware are faced with a problem: How
can we deal with the inherent trade-off between efficiency
and accuracy? Sometimes, we are genuinely stuck between a
rock and a hard place: Running a state-of-the-art deep learn-
ing neural network pipeline on a mobile device or even a
modern desktop simply isn’t feasible yet, but a much simpler
Histograms of Oriented Gradients (HOG) pipeline taped to
a linear classifier isn’t terribly impressive with regards to
accuracy. From a pure applications perspective, if we do
not wish to wait for tomorrow’s hardware to catch up so it
can run yesterday’s state-of-the-art algorithms, we must find
better ways of improving accuracy using what limited com-
putational power we have today. This paper represents our
ongoing efforts to create an efficient yet accurate mid-level
representation that can help solve a variety of real-world
computer vision tasks. Our aim is to build a lightweight, effi-
cient classifier that can approximate the performance of other
complicated, high-accuracy classifiers while being flexible

Figure 1. Overview of our Exemplar Codes pipeline. Each exem-
plar classifier is trained with one exemplar as positives and data
from other labels as negatives. The EVT-normalized score for each
exemplar becomes one element of the feature vector for the final
classifier. Exemplar Codes are efficient, only requiring one dot
product and one CDF evaluation per dimension.

enough to work well within many existing vision pipelines.
How can we do this? Rather than choosing between the

“better classifier” and “cheaper classifier,” we argue that com-
puter vision researchers can use mid-level representations
to manipulate the performance↔ efficiency curve. Usually,
adding another layer into the middle of a system with the aim
of improving accuracy typically makes the system slower.
Consider the “multitude of complex, nonlinear, multi-layer
neuromorphic feature representations” proposed in [5], for
example. Such features improve accuracy at the cost of in-
creased processing time since they send the image through
several layers of processing to calculate each feature di-
mension. Similarly, POOF features [24] require an affine
transformation, a feature extraction step, and a classification
decision for each dimension of the feature vector. On the
other side of the spectrum, PiCoDeS [2] focus on efficiency
and low memory use and are much simpler than the above
methods, but since they quantize each dimension to a single
bit to save time and memory, this method discards useful
information.

We aim to address the gap left by existing representa-
tions. Here, we present a novel mid-level representation
that approximates the accuracy of complicated radial basis
function (RBF) classifiers while achieving the efficiency of
linear classifiers. To this end, we introduce the Exemplar
Code representation. Each dimension of an Exemplar Code
is the decision score returned from a simple linear classifier
re-normalized to a probability estimate via extreme value
theory (EVT), which corresponds to the match probability
between the sample and an individual training exemplar.



These Exemplar Codes serve as feature vectors for a lin-
ear/nonlinear second-stage classifier. This formulation is
efficient: both training and classification complexities for
Exemplar Code classifiers scale linearly with the number of
training exemplars. Moreover, training an Exemplar Code
classifier is an embarrassingly parallel task suited to efficient
implementation on contemporary and future parallel archi-
tectures. Our pipeline is simple and generalizable to a wide
variety of applications beyond those mentioned here. Our
contributions are threefold:
• We introduce Exemplar Codes, a novel mid-level rep-

resentation for images based on simple linear classifiers
and a probability normalization technique from extreme
value theory.
• We use exemplar codes to create a face attribute ex-

traction system, compare the accuracy and efficiency
of our work to existing state-of-the-art, and outline
possible changes to improve efficiency without compro-
mising accuracy. We demonstrate that our Exemplar
Code system is at least as accurate as a heavyweight
RBF classifier, but is much more flexible and efficient.
• We implement a state of the art pipeline for uncon-

strained tattoo classification. We demonstrate this
pipeline works well on a challenging dataset of tattoo
images.

2 Background and Related Work
Our Exemplar Code classifiers are similar in nature to three
distinct branches of research. Classification by an ensemble
of exemplar SVMs was originally pioneered for the problem
of object detection. Malisiewicz et al. performed object de-
tection using a sliding window approach in conjunction with
hard-negative mining [16]. Whenever an exemplar decision
exceeds a threshold, this approach assigns a category to that
window. Our work is intended for classification, where we
consider the full image rather than a single sliding window.
Under this formulation, it makes more sense to intelligently
combine the scores from many exemplars rather than simply
using the label of the maximum Platt-calibrated score.

Bergamo et al., by contrast, formulated SVM ensemble
image descriptors for the purpose of novel category recog-
nition by second-stage classifiers [2, 3]. Their approach
learns basis classes, and uses the normalized decision scores
returned from these classifiers as inputs to a second-stage
SVM. This work differs from our approach in two ways:
First, Bergamo et al. define several classifiers by explicitly
optimizing for final-stage linear classifier performance while
ours is applicable to any final-stage classifier. Second, to
save memory, they quantize each classifier’s output to a sin-
gle bit which loses a great deal of information while we
leave our Exemplar Codes as floating-point values. Conse-
quently, the approach in [2] does not synthesize information
corresponding to single training instances, and the descriptor

discards valuable information that may be useful to the final
stage.

Both Malisiewicz et al. and Bergamo et al. used Platt
scaling to normalize distances from the decision boundaries
of raw classifiers into signed probability estimates for their
classifier ensembles. Platt normalization aims to improve
classification by using a sigmoid fit to estimate probabili-
ties. The sigmoid assumption behind Platt normalization,
however, is based on empirical observations of tails of score
distributions near SVM decision boundaries [19] with no
firm statistical grounding. Our approach uses a W-score nor-
malization, which unlike Platt normalization, is statistically
grounded in extreme value theory (EVT) [20, 21] and thus
is a more principled model for our system. We discuss this
more in Sec. 3.2.

Representing the decision function as some compar-
ison between the query samples and a held-out library
of exemplars is a common way to perform face recogni-
tion/verification and several algorithms are based on this
idea [25, 22, 26]. We emphasize that while we are not in-
terested specifically in face recognition, all of the following
systems provide interesting examples of mid-level represen-
tations that improve accuracy at some extra computational
expense.

One-shot similarity [25], for example, verifies whether
query images a and b have the same identity by training
two classifiers at test time, each one with its query image
as the lone positive and the entire library as negatives. The
decision score for the pair is the average of the scores of the
two classifiers. Decision scores for each descriptor are lifted
into a multidimensional feature representation by sampling
many random subsets of the library. Since several classifiers
must be trained at test time, this method is not suitable
for real-time applications. Our approach does not require
learning classifiers at test time, and instead of taking the
average of two sample classifiers, our final stage decision can
take advantage of as many pre-learned “sample-vs-library
comparison” classifiers as desired.

An approach based on ranked lists of doppelgängers [22]
decides whether two faces have the same identity by com-
puting similarity between a library of exemplars. They apply
a threshold to the correlation coefficient between the ranked
identity lists. Because their library contained many images
of varying pose and lighting, comparing ranks of identities
helps the classifier attain pose and illumination invariance.
However, this relative ranking destroys the absolute measure
of how similar objects are; for instance, this method cannot
distinguish between samples that are very similar to many
library exemplars from samples that are similar to only one
or two—information that may be useful for the final stage de-
cision. Further, this approach requires libraries that contain
a wide variety of poses and lighting for each identity.

The associate-predict model of [26] associates the query



images with images having similar pose and lighting within
a set of multi-view identities. Then, only the similarly-posed
images are compared to determine a verification result. Our
method does not rely on an assumed association result and
can compare using more samples than just the best-posed
match within the exemplar database, and it does not require
a held-out set of differently posed images.

2.1 Classification of Visual Facial Attributes
Visual attributes are commonly used in face recogni-
tion/verification for two reasons: Attributes carry semantic
meanings which are useful to humans and they are open-set
in nature, which means they can capture information about
unknown persons of interest even if the person is not in the
gallery.

In [13] and [12], Kumar et al. developed “AFS,” a state-
of-the-art visual attribute classification approach in which
an RBF kernel SVM is trained for each attribute. The fea-
ture vector corresponding to a given attribute consists of a
learned set of feature types extracted from a learned set of
functional regions of the face, giving each attribute classifier
the optimal attributes from the optimal regions of the face.
This approach serves as the baseline for our comparison in
Sec. 4.1. However, the final classification step is demanding
in terms of speed and memory use and thus is not feasible for
latency-sensitive real time applications which rely on facial
attribute classification.

2.2 Unconstrained Tattoo Recognition
Recognition of scars, marks, and tattoos has gained atten-
tion principally from the intelligence, law enforcement, and
forensic communities as a means of recognizing persons of
interest when hard biometrics, such as face or fingerprint
samples, are not available or are not sufficiently discrimina-
tive. Several approaches to tattoo classification to date have
offered promising results, but many are restricted in scope
to closed-set, pre-cropped images [10, 14, 1, 11, 17, 15, 7],
and are therefore predicated on the assumption that a tattoo
is present in the probe image in question. For large scale
content-based image retrieval (CBIR) applications, this as-
sumption is often invalid. In [8], Heflin et al. approached
the open-set problem by first using a GrabCut algorithm for
image segmentation, then classifying SIFT feature matches
via different one-class SVMs trained on positive sample
images of scars, marks, and tattoos of various types. How-
ever, for law-enforcement systems, one important functional
requirement is the ability to efficiently update classifiers.
Unfortunately, one-class SVM training time complexities
make this task expensive as the database size grows.

The flexibility inherent to Exemplar Code classifiers
makes them promising candidates for the problem of tat-
too classification. Since Exemplar Codes are comprised of
ensembles of linear classifiers, their effectiveness does not
depend on being able to fully characterize the geometry of

Figure 2. Samples of segmented tattoo images from each class
(top), and samples showing the variation in the skull class (bottom).
Intra-class variation often exceeds inter-class variation, complicat-
ing recognition.

tattoo classes in feature space. This is a challenging task for
all classification systems due to the wide variability among
tattoos of the same ground truth label; see Fig. 2 for exam-
ples. Instead, the effectiveness of Exemplar Codes depends
merely on having similar tattoo exemplars in the training
set. This way, the margin that separates tattoos of interest
from tattoos of other classes becomes better characterized
as the number of training exemplars grows. If the gallery
contains several images of skull tattoos that are sufficiently
similar to a given probe skull tattoo image, for example,
Exemplar Code classifiers may register a match even though
the precise geometry of the skull tattoo class boundary re-
mains unknown. Further, since each Exemplar Code is the
output of several linear classifiers, adding a new exemplar is
as simple as training a new linear classifier. Consequently,
gallery updates can be performed more often and with larger
galleries than kernel based systems can feasibly accommo-
date. Finally, an additional advantage of using Exemplar
Code classifiers for unconstrained tattoo classification is that
efficient detection and cropping can be performed via exem-
plar ensembles [16]. This means that redundancies between
object detection and classification can be largely eliminated
unlike in [8].

3 Formulation
In this section, we describe our Exemplar Codes approach in
detail. As discussed earlier, Exemplar Codes are composed
of EVT-normalized scores from linear exemplar classifiers,
but there are many steps to this process.

Rather than directly train a label classifier to each sample,
we represent each sample as a measure of several similarities
against a possibly separate library of exemplar feature vec-
tors. To create a similarity comparison, we independently
train several exemplar classifiers that each discriminate be-
tween that exemplar and sample vectors from other labels.
Thus, if an exemplar classifier outputs a high score, then the
test sample stands out from the negative data in a similar
way that the exemplar itself does. It is important to note
that we do not train exemplar classifiers with all other data
as negatives. If we did, we run the risk of overfitting be-
cause only the very closest samples to each exemplar would
become support vectors; each may induce a large tilt on



the hyper-plane if they are extremely close, making the fit-
ting unstable. Instead, we use only the differently-labeled
samples as negatives.

Each exemplar classifier is a simple linear classifier for
efficiency and because linear kernels are less likely to over-
fit than a neural network or RBF SVM. Though a linear
classifier arguably is not very discriminative, each one does
not need the complicated decision boundary required by the
overall category classifier; rather, we only need a simple
measure of similarity between the sample and its associated
exemplar. In this sense, we wish to define only the nega-
tives in a parametric way; the positive classifiers need only
establish non-parametric affinity because the negative data
influences the decision boundary the most [16].

3.1 Learning Exemplars
We consider the problem of creating a classifier that dis-
tinguishes between two or more application-specific la-
bels. This might be an attribute classifier that distinguishes
MALE from FEMALE labels or a tattoo classifier that dis-
tinguishes DOG from FLOWER from DRAGON tattoo la-
bels. As input, we use two (possibly identical) training
sets: a library of n exemplars E = {e1, . . . , en} with corre-
sponding labels Le = {le,1, . . . , le,n} and a set of m train-
ing samples T = {t1, . . . , tm} with corresponding labels
Lt = {lt,1, . . . , lt,m}. Each exemplar and each training sam-
ple is assumed to be represented as a 1 × d-dimensional
feature vector. Note that exemplars may be drawn from the
training set where m = n, E = T , and Le = Lt, or they
may be drawn from a separate set of held-out examples. If
|E| is large, exemplars can be chosen using the method in
Sec. 3.4.

To learn Exemplar Codes, we learn n linear classifiers
Ci : Rd → R that map samples to a decision score. The
ith classifier is trained with ei as the only positive sample
and {ej ∈ E | le,j 6= le,i} as the negative samples (i.e., all
exemplars with a different label). Other samples with the
same label are not part of the ith exemplar’s training set.
Note that the outputs of these classifiers are normalized; see
Sec. 3.2.

Our framework can use any linear classifier that rep-
resents each exemplar’s classification score function as
Ci(x) = xwT

i + bi where wi ∈ R1×d is the ith exem-
plar’s weight and bi is its bias. Representing exemplar clas-
sifiers by their coefficients has efficiency advantages. Let
W = [wT

1 |wT
2 | . . . |wT

n ] and B = [b1, b2, . . . , bn]. This al-
lows us to extract scores for several exemplars as a single
matrix multiplication, C∗(x) : Rd → Rn = xW + B,
which can be easily parallelized as appropriate. We define
C∗ to be the Exemplar Code extractor, and its output as a
sample’s Unnormalized Exemplar Code. Exemplar Codes
can be extracted in batch for several samples at once by
stacking them vertically and broadcasting B to the necessary
shape, leading to an extremely efficient extraction function.

3.2 Probability Normalization with Extreme
Value Theory

Each column of an Exemplar Code corresponds to one exem-
plar’s decision score which represents a notion of similarity
between the sample and that exemplar. Since that exemplar
classifier was trained on samples with other labels as nega-
tives, the classifier will learn characteristics that distinguish
it from samples with other labels. Intuitively, in a high-
enough dimensional feature space where each exemplar lies
on a spatial boundary, a sample that scores high on Ci(x) is
an outlier with respect to the rest of the dataset.

Unfortunately, one problem with treating raw SVM deci-
sion scores as a feature vector is that each classifier is trained
independently with no joint regularization. This means the
dimensions of a raw Exemplar Code will be inherently in-
comparable. To address this, we wish to define a calibration
that maps Ci(x) to the probability that x should be associ-
ated with exemplar i. Unfortunately, in a probabilistic sense,
we cannot assume anything about the distribution of scores
for a particular exemplar. In particular, we should not as-
sume that score distributions are Gaussian as many existing
normalization systems do. However, the extreme value the-
ory (EVT) [21, 20] allows us to reason about the tail of the
distribution. When decision scores are bounded—and SVM
scores are bounded by the margin—EVT states that the score
distribution’s tail must follow a Weibull distribution [20].
This gives us a principled way to estimate probabilities for
each exemplar’s scores: by computing Ci(t)∀t ∈ T , tak-
ing the top Ni scores, and fitting a Weibull distribution to
these, we can define Pi(Ci(x)) as the Weibull CDF accord-
ing to [20] that computes the probability that Ci(x) is an
outlier with respect to the rest of the training dataset. This
is also the probability that x is associated with the exemplar.
We set our tail size Ni to be 1.5 times the number of support
vectors in Ci.

It is important to distinguish between normalizing with
respect to the exemplar and normalizing with respect to the
category label. Platt normalization used by the Exemplar-
Ensemble approach [16] as well as W-score fitting [21] work
differently. These systems make the simplifying assumption
that samples from equal labels are alike, which allows them
to normalize with respect to the distribution of all scores in a
particular label. However, since different positive examples
might be different for different reasons from samples in other
labels, we wish for a more fine-grained formulation: we want
the normalization to reflect the probability that a sample is as-
sociated with the ith exemplar, not just the set of all similarly-
labeled samples. We cannot assume that all positives are
drawn from the same continuous set and we wish to retain the
individual granularity of each Exemplar Code independently.
This is why we perform the fitting to the tail of the score dis-
tribution for all samples regardless of label. For brevity, let
P ∗(x) = [P1(C1(x)), P2(C2(x)), . . . , Pn(Cn(x))] be the



sample’s Normalized Exemplar Code.

3.3 Classification Decision
Normalized Exemplar Codes make an excellent feature rep-
resentation for many kinds of final-stage classifiers. One
could imagine approaches based on SVMs, random forests,
or neural networks. In this paper, our focus is on efficiency;
thus, we typically use linear classifiers. In this case, let the
final decision score f(x) = P ∗(x)wT + b, where w and b
are learned as part of the final classifier via SVM or some
other linear classifier.

Note that even if linear classifiers are used for both indi-
vidual exemplar classifiers and the final stage decision, the
resulting classifier is not linear because of the probability
calibration. However, it is still efficient – a classification
decision takes n dot products, n Weibull CDF evaluations,
and one last n-dimensional dot product. Further, the final
model is compact, requiring n · (d + 1) floats for the Ex-
emplar Code classifiers, 2n floats for the Weibull scale and
shape parameters, and n floats for the final-stage classifier.
This is completely linear with respect to the number of ex-
emplars in the dataset. Below, we show that the accuracy
obtained using these models is statistically indistinguishable
from that obtained from more complicated RBF classifiers
used in other approaches.

3.4 Extreme Exemplar Codes
We find that the scores from many exemplar classifiers tend
to be strongly correlated and not all are needed to produce a
good classification decision. For efficiency, one can select
a subset of the “extreme” exemplars from E. The resulting
Exemplar Codes have dimensionality equal to the cardinality
of the subset. Since decision time scales linearly with the
number of exemplars, one can expect a 20× speedup by
selecting 5% of the exemplar classifiers as the “extreme”
exemplars. This can be done naı̈vely by selecting a random
fraction, or it can be done using iterated forward feature
selection where we greedily add the exemplar that minimizes
held-out validation error to our considered subset.

3.5 Cascade Exemplar-Code Classifiers
Finally, we fuse the extreme and full Exemplar Code decision
functions for a small accuracy boost. When a sample’s
decision score with respect to the “Extreme Exemplar Code”
linear classifier is confident (i.e. |fExtreme(x)| ≥ τ ), this
classifier is often a better predictor than f . Thus, in training,
we learn the threshold τ that maximizes held-out accuracy
as decided by

fCascaded =

{
fExtreme(x) if |fExtreme(x)| ≥ τ
f(x) otherwise.

(1)

In this case, both speed and accuracy of fCascaded vary based
on τ : if τ is too low, fExtreme will always be used, leading
to worse accuracy. However, if τ is too high, f will always

determine the decision score, which means the system must
always extract the full-dimensional exemplar code, decreas-
ing speed.

4 Exemplar Codes for Efficient Facial
Attribute Classification

In this section, we demonstrate Exemplar Codes within a
face attribute extractor similar to the RBF attribute classifiers
as described by Kumar et al. [13]. Our overall goal is to
make face attribute extraction feasible in a real-time setting.

Each of the 73 facial attributes is a binary decision score
that describes the presence or absence of an attribute; for
example, a positive “glasses” score means the subject likely
has glasses while a negative “male” score means the subject
is likely female. We consider inherently multiclass attributes
by splitting them into binary ones; for example, “hair color”
becomes “has blonde hair,” “has brown hair,” etc., for each
possible hair color. For a fair comparison, we retain the same
formulation and consider each binary attribute as separate
and independent from the others in our experiments.

The attribute extraction pipeline is quite similar to that
in [13]. First, we extract face fiducial coordinates using the
Everingham feature point extractor [6]. We use an affine
transformation to warp the images to a common reference
and use the same boosted feature extraction with the same
attribute-specific learned features used in [13].

From there, we learn Exemplar Code classifiers as dis-
cussed in Sec. 3. Here, E and T are both drawn from the
same training set and Le = Lt = {1,−1}n are the posi-
tive and negative labels for the considered attribute. After
probability normalization, a final linear classifier takes the
sample’s Exemplar Code as input and decides the single
attribute label.

Since n = m and E = T , each sample in the training set
becomes both one exemplar/one dimension of the Exemplar
Code feature vector and one training sample used to train the
final classifier. Even in this “restricted” scenario, Exemplar
Codes do not over-fit to the training/exemplar data. Note
that this scenario differs from other approaches that require
a separate “held-out” library of exemplar samples [24, 22,
23, 26, 2], which greatly simplifies data collection.

Once we learn Normalized Exemplar Code Transformer
P ∗ from E, we collect Exemplar Codes for the training
set V = {P ∗(t1), . . . , P

∗(tm)} and train the final stage
classifier using V and Lt. For these experiments, both the
final classifier and each exemplar classifier are linear SVM
classifiers.

Dataset. To evaluate our attribute extractor, we use a
private dataset of 197,933 face images split into 73 partitions
for 73 different semantic attributes. Since each attribute
contains a subset of the data, we consider each “attribute” as
a completely separate independent experiment. Each image
has one binary label that indicates the presence/absence of its



System Mean% Max% Min% Better Worse
A Cascaded Exemplar Codes 0.0 1.6 -2.5 7 10
B Extreme Exemplar Codes -0.6 1.4 -3.9 1 21
C Linear Classifier -2.2 0.7 -8.5 0 43
D Exemplar SVM Ensemble -27.7 -0.9 -75.9 0 73
E Platt Exemplar Codes -0.5 1.2 -3.6 2 13
F Unnormalized Exemplar Codes -1.1 1.6 -6.2 1 33
G LFW-Cascaded Exemplar Codes -0.6 2.4 -5.1 2 16

Table 1. Performance of several systems. For each system, we
show mean/max/min accuracy improvement compared to the RBF
pipeline in [13] over all 73 attributes, how many attributes are
statistically significantly better, and how many are worse. Cascaded
Exemplar Codes (A) perform identically to the RBF pipeline and
Extreme Exemplar Codes have minimal accuracy impact, but other
systems perform noticeably worse.

attribute. The number of exemplars/training samples n = m
varies between 1244 to 5656 with a mean of 2711 images
per attribute. Images were collected from around the web,
filtered with a face detector, and groundtruth labels were
collected with Amazon Mechanical Turk. We calculate each
attribute’s average accuracy with 5-fold cross validation on
the attribute’s partition. To decide whether the difference
between two systems is statistically significant with respect
to a given attribute, we compare the 5 scores of each system
by calculating the p-value using a paired two-tailed T-test.
If p < 0.1, we say the performance differs in a statistically
significant manner.

4.1 Face Experiments
Using the above protocol, we compare Exemplar Codes to
the RBF classifier pipeline described by Kumar et al [13],
which uses an RBF SVM trained on learned features as
described above. To reduce variation, we only compare
the classification performance, ignoring the identical align-
ment and feature extraction steps. On our training data, the
RBF pipeline achieves accuracies between 61.17% (“wear-
ing necklace”) and 97.55% (“color photo”) across all 73
attributes. AFS’ mean accuracy is 84.25%. Results for our
systems are shown in Tab. 1. We discuss each row:

(Row A): First, Cascaded Exemplar Codes’ accuracy
is statistically indistinguishable from [13] on most at-
tributes but it does have efficiency improvements in terms
of memory use and classification speed. Our Cascade Ex-
emplar Codes have no average accuracy change across all
attributes, and accuracy is always within 2.5% of the RBF
pipeline. Further, Cascade Exemplar Codes perform statisti-
cally significantly (s.s.) better on 7 attributes and s.s. worse
on 10. Thus, the two systems are quite comparable. In re-
turn, we gain efficiency improvements. Storing all exemplar
coefficients for the entire exemplar set along the final-stage
classifier takes 32.6% of the disk space of storing the RBF
classifier models. Classification throughput is also faster,
with a 1.31 speedup factor over the RBF classifier. 1 Our

1Our exemplar codes and our RBF pipeline both use the same library
to emphasize that the performance difference is not due to implementation.
Cascaded Exemplar Codes perform 2.74 times faster than the original AFS
system; Extreme Exemplar Codes perform a factor of 43.2 faster.

classifier can calculate 65.43 image attributes per second on
commodity hardware (ignoring feature extraction), which is
just under 1FPS if we wish to extract all 73 attributes from
each frame.

(Row B): We find that using a small set of exemplars
gives acceptable accuracy but an order of magnitude
speed increase. Using the greedy feature selection in
Sec. 3.4, we keep only 5% of the exemplars in E, keep-
ing all of T for training. The resulting Extreme Exemplar
Codes Classifier is still always within 3.9% of the RBF
pipeline. However, the extreme models take up 1

60 th of the
disk space and are 21.9 times faster than the RBF pipeline.
Our classifier can classify 1089 attributes per second, mak-
ing it possible to extract all 73 attributes at 14.9 frames per
second. At this speed, feature extraction (which we ignore)
becomes the bottleneck.

(Rows C,D): Our Exemplar Codes perform much bet-
ter than simple classifiers on this dataset. When we re-
place the original RBF classifier with a raw Linear Classifier
(Row C) on raw image features, the linear classifier does
s.s. worse on 43 attributes, sometimes up to 8.5% worse.
The Exemplar SVM Ensemble method of [16] (Row D)
where the label is chosen by the Platt-calibrated decision
score from the maximum-scoring exemplar performs s.s.
worse on all attributes. While it is better than chance most
of the time, it fails on inherently multiclass attributes like
hair color. In these cases, lifting exemplar decisions to our
higher-dimensional feature space is necessary for good per-
formance.

(Rows E,F): EVT probability normalization is a bet-
ter model than Platt probabilities. Performance of our
cascaded Exemplar Codes drops when replacing the EVT-
based Weibull normalization step with raw Platt normaliza-
tion to create Platt Exemplar Codes (Row E) or removing
normalization completely to create Unnormalized Exemplar
Codes (Row F), showing that W-score normalization is the
best model for our scenario.

(Row G): Finally, we show that Exemplar Codes can
be learned on a completely separate dataset without sig-
nificantly hurting performance, even without using any
groundtruth attribute labels. We set E to be 5,000 random
images from LFW [9] and le,i = i to be garbage labels so
each exemplar is trained with all n − 1 other examples as
negatives. These LFW-Cascaded Exemplar Codes (Row G)
perform only 0.6% worse on average and the maximum drop
is not more than 5.1%. Using properly labeled exemplars
could help here, but even without any human effort, per-
formance is still comparable and is still much better than
simpler classifiers.

5 Exemplar Codes for Tattoo Classification
Tattoos, unlike faces, have no pre-defined shape and are not
well suited to detection by a cascade classifier. In our tattoo
extraction and classification pipeline, we therefore use an



exemplar SVM ensemble object detector to detect the region
of interest surrounding the tattoo. The maximum similarity
score tells us whether the contents of the sliding window are
similar enough to any of the tattoo exemplars to plausibly
be a tattoo. We then categorize the tattoo via a two-stage
Exemplar Code classifier. The task of tattoo extraction uses
the methodology of [16], in which each ensemble of exem-
plar SVMs is trained, with one positive manually cropped
image and many negatives hard-mined from thousands of
images that do not contain the tattoo category. Exemplars
are trained on a multi-scale pyramid of HOG features which
serve as base features for classification.

During training of the exemplar ensemble, a linear SVM
is trained for each exemplar using a single positive sample
and a set of negative samples. The negative samples are
divided into a number of subsets and mined one subset at
a time; as a result, the SVM parameters are updated itera-
tively. This training process is repeated for each exemplar
SVM until an ensemble of classifiers is obtained for each
class. Because different exemplars may produce similarity
scores in different ranges, normalization of the ensemble is
performed prior to training the second stage classifier.

Following the methodology of [16], a validation set of
negatives, equal in cardinality but disjoint from the negative
training set, is used for normalization. We determined match
and non-match labels as windows having at least 50% over-
lap with the ground truth bounding box and at most 20%
overlap with the ground truth bounding box respectively.
We discard overlaps falling between 20% and 50%, then
learn normalization parameters using the similarity scores
and determined labels. Once we have acquired normaliza-
tion parameters, the similarity scores of the training set are
normalized via these parameters and the resulting Exemplar
Codes are submitted to the second stage classifier. Similarity
scores are computed for all classes in order to determine a
multi-class label for the given region of interest.

We used random forests for our second stage classifier.
Recently, random forests have gained attention for pattern
classification due to their effectiveness on nonlinear prob-
lems [4]. Our second stage random forest classifier takes
a feature vector consisting of Exemplar Codes for all tattoo
classes and classifies it through several decision trees, con-
structed via training on randomly sampled feature vectors
with replacement. Each node is split based on an out-of-bag
subset of variables. Every tree performs classification and
provides a vote. The class label is determined by the major-
ity vote of all the trees. One of the advantages of random
forests is that there is no need for variable selection, which
makes them suitable for features characterized by a large set
of Exemplar Codes. We used the OpenCV implementation
to construct our second stage classifiers.

Figure 3. An evaluation of the ensemble detector. The ROC curves on the
left indicate that 400 negative examples (green) perform best for when used
with 50 positive exemplars. The ROC curves on the right show that 40%
overlap (blue) provides a good compromise between detection precision
and recall.

5.1 Tattoo Experiments
We evaluated the tattoo detection algorithm using 50 seg-
mented positive examples of butterfly tattoos for training and
100 non-segmented images for testing. We determined the
detection rate in terms of the amount of detected bounding
box overlap with ground truth. Intuitively, requiring a high
percentage of overlap lowers the detection rate, because only
a very similar exemplar can yield a precise bounding box. In
practice, we found that 40% overlap offered a good trade-off
between detection rate and precision. Since exemplar SVMs
are parameterized principally by their negative training data,
we also examined how the number of negative examples
impacts detection performance. Interestingly, we found that
using a negative set of size 400 yielded better performance
than using either a negative set of size 800 or a negative
set of size 200, which we suspect is due to a need to obtain
some optimal level of generality for each exemplar SVM.
Our results are summarized in Figure 3.

To evaluate the classification performance of our Exem-
plar Code classifiers, we performed tests using images of five
classes of tattoos including butterfly, skull, flower, star, and
dragon; class names are taken from [18] where applicable.
Examples of these tattoo images are given in Figure 2. We
collected a test set of 50 butterfly, 50 skull, 46 flower, 50 star,
and 42 dragon pre-segmented tattoo images from Google
Images. The disjoint training set consisted of 50 butterfly,
60 skull, 80 flower, 64 star, and 50 dragon pre-segmented
tattoo images and 400 negative samples. We evaluated clas-
sification performance under both Platt normalization [19]
and W-score normalization [20] of the ensemble. In both
cases random forests were used as a second stage classifier.
Confusion matrices are shown in Fig. 4. Platt normalization
yielded 60.5% classification accuracy and W-score normal-
ization yielded 63.8% accuracy. This result provides addi-
tional evidence that W-score normalization offers superior
score calibration performance to Platt normalization.

We also performed a preliminary evaluation of Exem-
plar Codes versus PiCoDeS [2] and the Exemplar SVM
ensemble [16] alone. Our preliminary results show that for
closed-set recognition performance, PiCoDeS perform simi-



larly to the Exemplar SVM ensemble, but Exemplar Codes
outperform both systems on most classes.

W-score Platt normalized

Figure 4. Confusion matrices for Platt normalization (left) and W-score
normalization (right) Exemplar Code tattoo classifiers. While the two
matrices are similar, Platt scores confuse Dragons/Skulls. Platt’s overall
accuracy is 60.5%, and W-scores is 63.8%.

6 Conclusion
We introduced a flexible, scalable mid-level representation
that achieves accuracy on par with state of the art heavy-
weight classifiers at significantly less computational cost.
We demonstrated this capability on the task of facial attribute
classification, and we have shown that efficiency can be fur-
ther increased with little loss in accuracy by intelligently
selecting subsets of exemplars. For comparison, we released
Exemplar Code attribute scores for the LFW data set.2 Im-
plementation of both a facial attribute classification pipeline
and a tattoo classification pipeline demonstrate that our Ex-
emplar Code representation is flexible enough to be applied
to diverse problem domains. Moreover, Exemplar Code rep-
resentations are particularly suited to classification problems,
such as tattoo recognition, in which intra-class diversity and
non-linearity are too great to be easily characterized by con-
ventional classifiers. We also provided empirical evidence
that demonstrates the superiority of statistical extreme value
theory over Platt normalization for the purpose of calibrating
ensemble scores. In future work, additional applications of
Exemplar Code classifiers shall be investigated, as will better
techniques for selecting subsets of exemplars.
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